Nanoscale Structure–Property Relationships of Cyanate Ester as a Function of Extent of Cure

IF 6.9 Q1 POLYMER SCIENCE
Khatereh Kashmari, Josh Kemppainen, Sagar U. Patil, Julieta Barroeta Robles, Pascal Hubert and Gregory M. Odegard*, 
{"title":"Nanoscale Structure–Property Relationships of Cyanate Ester as a Function of Extent of Cure","authors":"Khatereh Kashmari,&nbsp;Josh Kemppainen,&nbsp;Sagar U. Patil,&nbsp;Julieta Barroeta Robles,&nbsp;Pascal Hubert and Gregory M. Odegard*,&nbsp;","doi":"10.1021/acspolymersau.5c00022","DOIUrl":null,"url":null,"abstract":"<p >Cyanate esters are key thermosetting resins for composite materials that require structural integrity and resistance to elevated temperatures. Because cyanate ester composites require relatively high processing temperatures, they are susceptible to the formation of process-induced residual stresses, which compromise their overall strength and durability. Process modeling is a key strategy for optimizing processing parameters to minimize such residual stresses. A necessary component of effective and efficient process modeling of composites is computationally established resin property evolution relationships for a range of processing parameters. In this study, the physical, mechanical, and thermal properties of a cyanate ester resin are established as a function of processing time and temperature using experimentally validated molecular dynamics modeling. The results show that the properties are strongly dependent on the processing temperature. At processing temperatures above 160 °C, the properties quickly approach their fully cured values, whereas at processing temperatures below 140 °C, the chemical cross-linking is significantly inhibited, and processing times to complete cure are relatively long. The evolution of the physical, mechanical, and thermal properties as a function of processing time is established, which is critical data needed as input into multiscale process modeling and optimization of cyanate ester composites for computationally driven composite design.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 4","pages":"369–378"},"PeriodicalIF":6.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acspolymersau.5c00022","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS polymers Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acspolymersau.5c00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Cyanate esters are key thermosetting resins for composite materials that require structural integrity and resistance to elevated temperatures. Because cyanate ester composites require relatively high processing temperatures, they are susceptible to the formation of process-induced residual stresses, which compromise their overall strength and durability. Process modeling is a key strategy for optimizing processing parameters to minimize such residual stresses. A necessary component of effective and efficient process modeling of composites is computationally established resin property evolution relationships for a range of processing parameters. In this study, the physical, mechanical, and thermal properties of a cyanate ester resin are established as a function of processing time and temperature using experimentally validated molecular dynamics modeling. The results show that the properties are strongly dependent on the processing temperature. At processing temperatures above 160 °C, the properties quickly approach their fully cured values, whereas at processing temperatures below 140 °C, the chemical cross-linking is significantly inhibited, and processing times to complete cure are relatively long. The evolution of the physical, mechanical, and thermal properties as a function of processing time is established, which is critical data needed as input into multiscale process modeling and optimization of cyanate ester composites for computationally driven composite design.

纳米级氰酸酯的结构-性能关系及其固化程度的函数
氰酸酯是要求结构完整性和耐高温的复合材料的关键热固性树脂。由于氰酸酯复合材料需要相对较高的加工温度,它们很容易形成工艺诱导的残余应力,从而损害其整体强度和耐久性。过程建模是优化加工参数以最小化残余应力的关键策略。有效和高效的复合材料工艺建模的必要组成部分是计算建立树脂性能演化关系的一系列加工参数。在本研究中,利用实验验证的分子动力学模型,建立了氰酸酯树脂的物理、机械和热性能作为加工时间和温度的函数。结果表明,合金的性能与加工温度密切相关。在160°C以上的加工温度下,其性能迅速接近完全固化值,而在140°C以下的加工温度下,化学交联明显受到抑制,完全固化的加工时间相对较长。建立了氰酸酯复合材料的物理、力学和热性能随加工时间的变化规律,这是计算驱动复合材料设计中多尺度工艺建模和优化所需的关键数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信