Integration of quantum key distribution and high-throughput classical communications in field-deployed multi-core fibers

IF 23.4 Q1 OPTICS
Qi Wu, Domenico Ribezzo, Giammarco Di Sciullo, Sebastiano Cocchi, Divya Ann Shaji, Lucas Alves Zischler, Ruben Luis, Paolo Serena, Chiara Lasagni, Alberto Bononi, Tetsuya Hayashi, Alessandro Gagliano, Paolo Martelli, Alberto Gatto, Paola Parolari, Pierpaolo Boffi, Davide Bacco, Alessandro Zavatta, Yixiao Zhu, Weisheng Hu, Zhaopeng Xu, Mark Shtaif, Andrea Marotta, Fabio Graziosi, Antonio Mecozzi, Cristian Antonelli
{"title":"Integration of quantum key distribution and high-throughput classical communications in field-deployed multi-core fibers","authors":"Qi Wu, Domenico Ribezzo, Giammarco Di Sciullo, Sebastiano Cocchi, Divya Ann Shaji, Lucas Alves Zischler, Ruben Luis, Paolo Serena, Chiara Lasagni, Alberto Bononi, Tetsuya Hayashi, Alessandro Gagliano, Paolo Martelli, Alberto Gatto, Paola Parolari, Pierpaolo Boffi, Davide Bacco, Alessandro Zavatta, Yixiao Zhu, Weisheng Hu, Zhaopeng Xu, Mark Shtaif, Andrea Marotta, Fabio Graziosi, Antonio Mecozzi, Cristian Antonelli","doi":"10.1038/s41377-025-01982-z","DOIUrl":null,"url":null,"abstract":"<p>Quantum key distribution (QKD) is a secure communication method for sharing symmetric cryptographic keys based on the principles of quantum physics. Its integration into the fiber-optic network infrastructure is important for ensuring privacy in optical communications. Multi-core fibers (MCFs), the likely building blocks of future high-capacity optical networks, offer new opportunities for such integration. Here, we experimentally demonstrate, for the first time, the coexistence of discrete-variable QKD and high-throughput classical communication in the C-band over a field-deployed MCF with industry standard cladding diameter of 125 μm. Specifically, we demonstrate successful secure-key establishment in one core of a 25.2-km uncoupled-core MCF, while simultaneously loading the remaining three cores with full C-band counter-propagating classical traffic at an aggregate net rate of 110.8 Tb/s. By proposing and experimentally validating an improved analytical model for inter-core spontaneous Raman scattering noise, we find that this configuration is optimal for our deployed MCF link as it is immune to four-wave mixing, that becomes relevant when the quantum and classical signals are propagating in the same direction. Our findings make an important step forward in demonstrating the integration of QKD and classical transmission in uncoupled-core multi-core fibers for next-generation optical communication networks.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"750 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01982-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum key distribution (QKD) is a secure communication method for sharing symmetric cryptographic keys based on the principles of quantum physics. Its integration into the fiber-optic network infrastructure is important for ensuring privacy in optical communications. Multi-core fibers (MCFs), the likely building blocks of future high-capacity optical networks, offer new opportunities for such integration. Here, we experimentally demonstrate, for the first time, the coexistence of discrete-variable QKD and high-throughput classical communication in the C-band over a field-deployed MCF with industry standard cladding diameter of 125 μm. Specifically, we demonstrate successful secure-key establishment in one core of a 25.2-km uncoupled-core MCF, while simultaneously loading the remaining three cores with full C-band counter-propagating classical traffic at an aggregate net rate of 110.8 Tb/s. By proposing and experimentally validating an improved analytical model for inter-core spontaneous Raman scattering noise, we find that this configuration is optimal for our deployed MCF link as it is immune to four-wave mixing, that becomes relevant when the quantum and classical signals are propagating in the same direction. Our findings make an important step forward in demonstrating the integration of QKD and classical transmission in uncoupled-core multi-core fibers for next-generation optical communication networks.

Abstract Image

现场部署多芯光纤中量子密钥分配与高吞吐量经典通信的集成
量子密钥分发(QKD)是一种基于量子物理原理的对称密码密钥共享的安全通信方法。将其集成到光纤网络基础设施中对于确保光通信的私密性非常重要。多芯光纤(mcf)可能是未来高容量光网络的基石,为这种集成提供了新的机会。在这里,我们首次通过实验证明,在工业标准包层直径为125 μm的现场部署MCF上,离散变量QKD和c波段高通量经典通信共存。具体来说,我们演示了在25.2公里非耦合核心MCF的一个核心中成功建立安全密钥,同时以110.8 Tb/s的总净速率加载其余三个核心的全c波段反传播经典流量。通过提出并实验验证核间自发拉曼散射噪声的改进分析模型,我们发现这种配置对于我们部署的MCF链路是最佳的,因为它不受四波混频的影响,当量子信号和经典信号在同一方向传播时,四波混频变得相关。我们的研究结果在展示下一代光通信网络中非耦合多芯光纤中QKD和经典传输的集成方面迈出了重要的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信