Anaerobic breviate protist survival in microcosms depends on microbiome metabolic function.

Karla Iveth Aguilera-Campos, Julie Boisard, Viktor Törnblom, Jon Jerlström-Hultqvist, Ada Behncké-Serra, Elena Aramendia Cotillas, Courtney Weir Stairs
{"title":"Anaerobic breviate protist survival in microcosms depends on microbiome metabolic function.","authors":"Karla Iveth Aguilera-Campos, Julie Boisard, Viktor Törnblom, Jon Jerlström-Hultqvist, Ada Behncké-Serra, Elena Aramendia Cotillas, Courtney Weir Stairs","doi":"10.1093/ismejo/wraf171","DOIUrl":null,"url":null,"abstract":"Anoxic and hypoxic environments serve as habitats for diverse microorganisms, including unicellular eukaryotes (protists) and prokaryotes. To thrive in low-oxygen environments, protists and prokaryotes often establish specialized metabolic cross-feeding associations, such as syntrophy, with other microorganisms. Previous studies show that the breviate protist Lenisia limosa engages in a mutualistic association with a denitrifying Arcobacter bacterium based on hydrogen exchange. Here, we investigate if the ability to form metabolic interactions is conserved in other breviates by studying five diverse breviate microcosms and their associated bacteria. We show that five laboratory microcosms of marine breviates live with multiple hydrogen-consuming prokaryotes that are predicted to have different preferences for terminal electron acceptors using genome-resolved metagenomics. Protist growth rates vary in response to electron acceptors depending on the make-up of the prokaryotic community. We find that the metabolic capabilities of the bacteria and not their taxonomic affiliations determine protist growth and survival and present new potential protist-interacting bacteria from the Arcobacteraceae, Desulfovibrionaceae, and Terasakiella lineages. This investigation uncovers potential nitrogen and sulfur cycling pathways within these bacterial populations, hinting at their roles in syntrophic interactions with the protists via hydrogen exchange.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Anoxic and hypoxic environments serve as habitats for diverse microorganisms, including unicellular eukaryotes (protists) and prokaryotes. To thrive in low-oxygen environments, protists and prokaryotes often establish specialized metabolic cross-feeding associations, such as syntrophy, with other microorganisms. Previous studies show that the breviate protist Lenisia limosa engages in a mutualistic association with a denitrifying Arcobacter bacterium based on hydrogen exchange. Here, we investigate if the ability to form metabolic interactions is conserved in other breviates by studying five diverse breviate microcosms and their associated bacteria. We show that five laboratory microcosms of marine breviates live with multiple hydrogen-consuming prokaryotes that are predicted to have different preferences for terminal electron acceptors using genome-resolved metagenomics. Protist growth rates vary in response to electron acceptors depending on the make-up of the prokaryotic community. We find that the metabolic capabilities of the bacteria and not their taxonomic affiliations determine protist growth and survival and present new potential protist-interacting bacteria from the Arcobacteraceae, Desulfovibrionaceae, and Terasakiella lineages. This investigation uncovers potential nitrogen and sulfur cycling pathways within these bacterial populations, hinting at their roles in syntrophic interactions with the protists via hydrogen exchange.
厌氧短生物体在微环境中的生存取决于微生物群的代谢功能。
缺氧和缺氧环境是多种微生物的栖息地,包括单细胞真核生物(原生生物)和原核生物。为了在低氧环境中茁壮成长,原生生物和原核生物经常与其他微生物建立专门的代谢交叉摄食联系,如合胞效应。先前的研究表明,短状原生生物Lenisia limosa与反硝化Arcobacter细菌在氢交换的基础上相互作用。在这里,我们通过研究五种不同的短祷菌及其相关细菌来研究是否在其他短祷菌中形成代谢相互作用的能力是保守的。我们展示了5种海洋短藻的实验室微观生物与多种消耗氢的原核生物一起生活,这些原核生物使用基因组解析宏基因组学预测对终端电子受体有不同的偏好。原核生物的生长速率随电子受体的变化而变化,这取决于原核生物群落的组成。我们发现细菌的代谢能力而不是它们的分类关系决定了原生生物的生长和生存,并从Arcobacteraceae, Desulfovibrionaceae和Terasakiella谱系中发现了新的潜在的与原生生物相互作用的细菌。这项研究揭示了这些细菌群体中潜在的氮和硫循环途径,暗示了它们通过氢交换与原生生物相互作用的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信