Christian Duffee, Jordan Athas, Yixin Shao, Noraica Davila Melendez, Eleonora Raimondo, Jordan A. Katine, Kerem Y. Camsari, Giovanni Finocchio, Pedram Khalili Amiri
{"title":"An integrated-circuit-based probabilistic computer that uses voltage-controlled magnetic tunnel junctions as its entropy source","authors":"Christian Duffee, Jordan Athas, Yixin Shao, Noraica Davila Melendez, Eleonora Raimondo, Jordan A. Katine, Kerem Y. Camsari, Giovanni Finocchio, Pedram Khalili Amiri","doi":"10.1038/s41928-025-01439-6","DOIUrl":null,"url":null,"abstract":"Probabilistic Ising machines could be used to solve computationally hard problems more efficiently than deterministic algorithms on von Neumann computers. Stochastic magnetic tunnel junctions are potential entropy sources for such Ising machines. However, scaling up stochastic magnetic tunnel junction probabilistic Ising machines requires the fine control of a small magnetic energy barrier and duplication of area-intensive digital-to-analogue converter elements across large numbers of devices. The non-spintronic components of these machines are also typically created using general-purpose processors or field-programmable gate arrays. Here we report a probabilistic computer that is based on an application-specific integrated circuit fabricated using 130-nm foundry complementary metal–oxide–semiconductor technology and uses voltage-controlled magnetic tunnel junctions as its entropy source. With the system, we implement integer factorization as a representative hard optimization problem using probabilistic Ising-machine-based invertible logic gates created with 1,143 probabilistic bits. The application-specific integrated circuit uses stochastic bit sequences read from an adjacent voltage-controlled magnetic tunnel junction chip. The magnetic tunnel junctions are thermally stable in the absence of a voltage and synchronously generate random bits without the use of digital-to-analogue converter elements using the voltage-controlled magnetic anisotropy effect. An application-specific integrated circuit that is fabricated in 130-nm foundry complementary metal–oxide–semiconductor technology, and uses stochastic bit sequences read from an adjacent voltage-controlled magnetic tunnel junction chip, can be used to solve integer factorization problems.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"8 9","pages":"784-793"},"PeriodicalIF":40.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-025-01439-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Probabilistic Ising machines could be used to solve computationally hard problems more efficiently than deterministic algorithms on von Neumann computers. Stochastic magnetic tunnel junctions are potential entropy sources for such Ising machines. However, scaling up stochastic magnetic tunnel junction probabilistic Ising machines requires the fine control of a small magnetic energy barrier and duplication of area-intensive digital-to-analogue converter elements across large numbers of devices. The non-spintronic components of these machines are also typically created using general-purpose processors or field-programmable gate arrays. Here we report a probabilistic computer that is based on an application-specific integrated circuit fabricated using 130-nm foundry complementary metal–oxide–semiconductor technology and uses voltage-controlled magnetic tunnel junctions as its entropy source. With the system, we implement integer factorization as a representative hard optimization problem using probabilistic Ising-machine-based invertible logic gates created with 1,143 probabilistic bits. The application-specific integrated circuit uses stochastic bit sequences read from an adjacent voltage-controlled magnetic tunnel junction chip. The magnetic tunnel junctions are thermally stable in the absence of a voltage and synchronously generate random bits without the use of digital-to-analogue converter elements using the voltage-controlled magnetic anisotropy effect. An application-specific integrated circuit that is fabricated in 130-nm foundry complementary metal–oxide–semiconductor technology, and uses stochastic bit sequences read from an adjacent voltage-controlled magnetic tunnel junction chip, can be used to solve integer factorization problems.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.