Yongping Yuan, Xiuying Wang, Verel Benson, Limei Ran
{"title":"An Integrated Multi-Media Modeling System for Regional- to National-Scale Nitrogen and Crop Productivity Assessments.","authors":"Yongping Yuan, Xiuying Wang, Verel Benson, Limei Ran","doi":"10.3390/agriculture15101017","DOIUrl":null,"url":null,"abstract":"<p><p>Excessive nutrients transported from agricultural fields into the environment are causing environmental and ecological problems. This study uses an integrated multi-media modeling system version 1 (IMMMS 1.0) linking air, land surface, and watershed processes to assess corn grain yield and nitrogen (N) losses resulting from changing fertilization conditions across the contiguous United States. Two fertilizer management scenarios (FMSs) were compared and evaluated: 2006 FMS, developed based on the 2006 fertilizer sales data; and 2011 FMS, developed based on 2011 fertilizer sales and manure. Corn grain yields captured historical reported values with average percent errors of 4.8% and 0.7% for the 2006 FMS and 2011 FMS, respectively. Increased nitrogen (N) application of 21.2% resulted in a slightly increased corn grain yield of 5% in the 2011 FMS, but the simulated total N loss (through denitrification, volatilization, water, and sediment) increased to 49.3%. A better correlation was identified between crop N uptake and N application in the 2006 FMS (R<sup>2</sup> = 0.60) than the 2011 FMS (R<sup>2</sup> = 0.51), indicating that applied N was better utilized by crops in the 2006 FMS. Animal manure could create nutrient surpluses and lead to greater N loss, as identified in the regions of the Pacific and Southern Plains in the 2011 FMS. Manure nutrient management is important and urgently needed to protect our air and water quality. The IMMMS 1.0 is responsive to different FMSs and can be utilized to address alternative management scenarios to determine their impact when addressing the sustainability of food production and environmental issues.</p>","PeriodicalId":48587,"journal":{"name":"Agriculture-Basel","volume":"15 10","pages":"1017"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12338305/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/agriculture15101017","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Excessive nutrients transported from agricultural fields into the environment are causing environmental and ecological problems. This study uses an integrated multi-media modeling system version 1 (IMMMS 1.0) linking air, land surface, and watershed processes to assess corn grain yield and nitrogen (N) losses resulting from changing fertilization conditions across the contiguous United States. Two fertilizer management scenarios (FMSs) were compared and evaluated: 2006 FMS, developed based on the 2006 fertilizer sales data; and 2011 FMS, developed based on 2011 fertilizer sales and manure. Corn grain yields captured historical reported values with average percent errors of 4.8% and 0.7% for the 2006 FMS and 2011 FMS, respectively. Increased nitrogen (N) application of 21.2% resulted in a slightly increased corn grain yield of 5% in the 2011 FMS, but the simulated total N loss (through denitrification, volatilization, water, and sediment) increased to 49.3%. A better correlation was identified between crop N uptake and N application in the 2006 FMS (R2 = 0.60) than the 2011 FMS (R2 = 0.51), indicating that applied N was better utilized by crops in the 2006 FMS. Animal manure could create nutrient surpluses and lead to greater N loss, as identified in the regions of the Pacific and Southern Plains in the 2011 FMS. Manure nutrient management is important and urgently needed to protect our air and water quality. The IMMMS 1.0 is responsive to different FMSs and can be utilized to address alternative management scenarios to determine their impact when addressing the sustainability of food production and environmental issues.
期刊介绍:
Agriculture (ISSN 2077-0472) is an international and cross-disciplinary scholarly and scientific open access journal on the science of cultivating the soil, growing, harvesting crops, and raising livestock. We will aim to look at production, processing, marketing and use of foods, fibers, plants and animals. The journal Agriculturewill publish reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.