Predictive classification and regression models for bioimpedance vector analysis: Insights from a southern Cuban cohort.

Q3 Biochemistry, Genetics and Molecular Biology
Journal of Electrical Bioimpedance Pub Date : 2025-08-04 eCollection Date: 2025-01-01 DOI:10.2478/joeb-2025-0012
Jose Luis García Bello, Taira Batista Luna, My Phuong Pham-Ho, Minh Tho Nguyen, Alcibíades Lara Lafargue, Héctor Manuel Camué Ciria, Yohandys A Zulueta
{"title":"Predictive classification and regression models for bioimpedance vector analysis: Insights from a southern Cuban cohort.","authors":"Jose Luis García Bello, Taira Batista Luna, My Phuong Pham-Ho, Minh Tho Nguyen, Alcibíades Lara Lafargue, Héctor Manuel Camué Ciria, Yohandys A Zulueta","doi":"10.2478/joeb-2025-0012","DOIUrl":null,"url":null,"abstract":"<p><p>This study used predictive models to explore the link between bioparameters at characteristic frequency and their positions within tolerance ellipses in a southern Cuban cohort. The database includes 367 individuals (235 females, 132 males) aged 18-86. Among them, 61 had cancer, while 306 were healthy. After balancing the data, the analysis used 16 bioimpedance-based characteristics along with other anthropometric and location factors. The results showed that characteristic frequency bioparameters (Zc, θc, Xcc, and Rc) are key for assessing health and location. There was a strong agreement between experimental and predicted values for Zc, θc, Xcc, and Rc across various categories. Cancer patients showed higher Zc and slightly lower <i>θ</i> <sub><i>c</i></sub> and Xcc values, attributed to unbalanced body composition and cell membrane deterioration. Females exhibited higher Zc and Xcc values, indicating better cell membrane integrity. Predictions are consistent across quartiles and percentiles, with lower <i>θ</i> <sub><i>c</i></sub> observed in higher quartiles and centiles where more cancer patients are located. Variations in Rc values across different BIVA statuses demonstrated the model's robustness in estimating impedance parameters in diverse physiological conditions. These predictive models are significant for assigning locations without developing BIVA methods, enhancing clinical assessments and health monitoring.</p>","PeriodicalId":38125,"journal":{"name":"Journal of Electrical Bioimpedance","volume":"16 1","pages":"89-98"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337257/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Bioimpedance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/joeb-2025-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

This study used predictive models to explore the link between bioparameters at characteristic frequency and their positions within tolerance ellipses in a southern Cuban cohort. The database includes 367 individuals (235 females, 132 males) aged 18-86. Among them, 61 had cancer, while 306 were healthy. After balancing the data, the analysis used 16 bioimpedance-based characteristics along with other anthropometric and location factors. The results showed that characteristic frequency bioparameters (Zc, θc, Xcc, and Rc) are key for assessing health and location. There was a strong agreement between experimental and predicted values for Zc, θc, Xcc, and Rc across various categories. Cancer patients showed higher Zc and slightly lower θ c and Xcc values, attributed to unbalanced body composition and cell membrane deterioration. Females exhibited higher Zc and Xcc values, indicating better cell membrane integrity. Predictions are consistent across quartiles and percentiles, with lower θ c observed in higher quartiles and centiles where more cancer patients are located. Variations in Rc values across different BIVA statuses demonstrated the model's robustness in estimating impedance parameters in diverse physiological conditions. These predictive models are significant for assigning locations without developing BIVA methods, enhancing clinical assessments and health monitoring.

生物阻抗矢量分析的预测分类和回归模型:来自古巴南部队列的见解。
本研究使用预测模型来探索古巴南部队列中特征频率的生物参数与其在耐受椭圆内的位置之间的联系。该数据库包括367人(235名女性,132名男性),年龄在18-86岁之间。其中61人患有癌症,306人健康。在平衡数据后,分析使用了16个基于生物阻抗的特征以及其他人体测量和位置因素。结果表明,特征频率生物参数(Zc、θc、Xcc和Rc)是评估健康和定位的关键。在各种类别中,Zc、θc、Xcc和Rc的实验值和预测值之间有很强的一致性。肿瘤患者的Zc较高,θ c和Xcc略低,这是由于机体成分失衡和细胞膜恶化所致。雌性具有较高的Zc和Xcc值,表明其细胞膜完整性较好。预测在四分位数和百分位数之间是一致的,在癌症患者较多的高四分位数和百分位数中观察到较低的θ c。不同BIVA状态下Rc值的变化证明了该模型在不同生理条件下估计阻抗参数的鲁棒性。这些预测模型对于在不开发BIVA方法的情况下分配地点、加强临床评估和健康监测具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Electrical Bioimpedance
Journal of Electrical Bioimpedance Engineering-Biomedical Engineering
CiteScore
3.00
自引率
0.00%
发文量
8
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信