Mingfeng Cao, Camila S Contreras-Rojas, Qihong Wang, Yaman B Ahmed, Jessica Briscoe, Carlos A Pardo, Hannah Rando, Jin Kook Kang, Glenn Whitman, Steve Keller, Tito Porras, Sung-Min Cho
{"title":"Exploring the Association Between Early PaCO<sub>2</sub> Correction Speed and Cerebrovascular Autoregulation in a Porcine Model of Extracorporeal Resuscitation.","authors":"Mingfeng Cao, Camila S Contreras-Rojas, Qihong Wang, Yaman B Ahmed, Jessica Briscoe, Carlos A Pardo, Hannah Rando, Jin Kook Kang, Glenn Whitman, Steve Keller, Tito Porras, Sung-Min Cho","doi":"10.1007/s12975-025-01376-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Prior clinical research demonstrated that rapid reduction in arterial carbon dioxide (PaCO<sub>2</sub>) levels during extracorporeal membrane oxygenation (ECMO) is associated with acute brain injury (ABI), which may be due to sudden cerebral vasoconstriction and impaired cerebrovascular autoregulation (CVAR). However, the causal relationship between rapid PaCO<sub>2</sub> correction and its impact on ABI has not been firmly established due to the lack of high-quality evidence. We aimed to investigate whether rapid PaCO<sub>2</sub> correction following extracorporeal cardiopulmonary resuscitation (ECPR) causes CVAR impairment and neuronal injury in a porcine model.</p><p><strong>Methods: </strong>In this prospective preclinical experimental study, six female pigs (mean weight: 50.75 ± 1.89 kg) were subjected to 15 min of ventricular fibrillation and were then supported by ECMO. The return of spontaneous circulation (ROSC) was attempted in animals at 20 min post-ECMO initiation. Arterial blood gas (ABG) was sampled at specific time points, while arterial blood pressure (ABP) and intracranial pressure (ICP) were continuously monitored. Sweep gas flow was set relative to each animal's ECMO flow rate: 100% in the control group, 200% in the rapid correction group, and 25% in the slow correction group. PRx was computed as the Pearson correlation coefficient between 10-s average mean arterial pressure (MAP) and ICP values using 1-min windows updated every 30 s. Experimental phases were defined for data analysis, including baseline, fibrillation, ECMO I (0-10 min after ECMO initiation), ECMO II (10-20 min), and POST-R (post-ROSC, 20-30 min). Linear mixed-effects models were used to assess group-wise differences in ΔPRx over time. Histopathological analysis was performed to quantify neuronal injury across cortical and subcortical regions. Brain tissues were harvested and histologically analyzed for neuronal injury ischemia vulnerable regions: the midbrain, cerebellum, striatum in the basal ganglia, temporal cortex, hypothalamus, and hippocampus.</p><p><strong>Results: </strong>In the rapid group, PaCO<sub>2</sub> correction caused a steep drop in PaCO₂-from 60 to approximately 30 mmHg within 5 min-and was associated with impaired CVAR. Following ECMO initiation, the rapid group exhibited a significant rise in ΔPRx, indicating impaired CVAR. Group differences in ΔPRx were significant at ECMO I (F = 8.12, p = 0.001), ECMO II (F = 6.21, p = 0.003), and POST-R (F = 13.47, p < 0.001). At ECMO II, median PRx in the rapid group was 0.50 (IQR: 0.10, 0.78), significantly higher than the control (0.11, IQR: - 0.27, 0.42) and slow (0.38, IQR: - 0.06, 0.55). Histologically, the rapid correction group exhibited significantly increased ischemic neuronal injury in ischemia-prone regions: caudate (43.1% injured neurons vs. 10.6% in control, p = 0.041), putamen (66.6% vs. 23.9%, p = 0.003), temporal cortex (34.9% vs. 8.9%, p = 0.013), and hippocampal CA-3 region (4.7% vs. 18.0%, p = 0.026). Compared to rapid correction, the slow correction group demonstrated improved gas stability (PaCO<sub>2</sub> decline of ~ 10 mmHg over 10 min), preserved PRx (mean PRx < 0.2), and significantly reduced neuronal injury in the putamen (p = 0.004).</p><p><strong>Conclusion: </strong>In this experimental ECPR model, faster early PaCO<sub>2</sub> correction was associated with impaired CVAR (higher PRx values). Controlled CO<sub>2</sub> correction should be considered a key neuroprotective strategy during ECMO initiation.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Stroke Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12975-025-01376-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Prior clinical research demonstrated that rapid reduction in arterial carbon dioxide (PaCO2) levels during extracorporeal membrane oxygenation (ECMO) is associated with acute brain injury (ABI), which may be due to sudden cerebral vasoconstriction and impaired cerebrovascular autoregulation (CVAR). However, the causal relationship between rapid PaCO2 correction and its impact on ABI has not been firmly established due to the lack of high-quality evidence. We aimed to investigate whether rapid PaCO2 correction following extracorporeal cardiopulmonary resuscitation (ECPR) causes CVAR impairment and neuronal injury in a porcine model.
Methods: In this prospective preclinical experimental study, six female pigs (mean weight: 50.75 ± 1.89 kg) were subjected to 15 min of ventricular fibrillation and were then supported by ECMO. The return of spontaneous circulation (ROSC) was attempted in animals at 20 min post-ECMO initiation. Arterial blood gas (ABG) was sampled at specific time points, while arterial blood pressure (ABP) and intracranial pressure (ICP) were continuously monitored. Sweep gas flow was set relative to each animal's ECMO flow rate: 100% in the control group, 200% in the rapid correction group, and 25% in the slow correction group. PRx was computed as the Pearson correlation coefficient between 10-s average mean arterial pressure (MAP) and ICP values using 1-min windows updated every 30 s. Experimental phases were defined for data analysis, including baseline, fibrillation, ECMO I (0-10 min after ECMO initiation), ECMO II (10-20 min), and POST-R (post-ROSC, 20-30 min). Linear mixed-effects models were used to assess group-wise differences in ΔPRx over time. Histopathological analysis was performed to quantify neuronal injury across cortical and subcortical regions. Brain tissues were harvested and histologically analyzed for neuronal injury ischemia vulnerable regions: the midbrain, cerebellum, striatum in the basal ganglia, temporal cortex, hypothalamus, and hippocampus.
Results: In the rapid group, PaCO2 correction caused a steep drop in PaCO₂-from 60 to approximately 30 mmHg within 5 min-and was associated with impaired CVAR. Following ECMO initiation, the rapid group exhibited a significant rise in ΔPRx, indicating impaired CVAR. Group differences in ΔPRx were significant at ECMO I (F = 8.12, p = 0.001), ECMO II (F = 6.21, p = 0.003), and POST-R (F = 13.47, p < 0.001). At ECMO II, median PRx in the rapid group was 0.50 (IQR: 0.10, 0.78), significantly higher than the control (0.11, IQR: - 0.27, 0.42) and slow (0.38, IQR: - 0.06, 0.55). Histologically, the rapid correction group exhibited significantly increased ischemic neuronal injury in ischemia-prone regions: caudate (43.1% injured neurons vs. 10.6% in control, p = 0.041), putamen (66.6% vs. 23.9%, p = 0.003), temporal cortex (34.9% vs. 8.9%, p = 0.013), and hippocampal CA-3 region (4.7% vs. 18.0%, p = 0.026). Compared to rapid correction, the slow correction group demonstrated improved gas stability (PaCO2 decline of ~ 10 mmHg over 10 min), preserved PRx (mean PRx < 0.2), and significantly reduced neuronal injury in the putamen (p = 0.004).
Conclusion: In this experimental ECPR model, faster early PaCO2 correction was associated with impaired CVAR (higher PRx values). Controlled CO2 correction should be considered a key neuroprotective strategy during ECMO initiation.
期刊介绍:
Translational Stroke Research covers basic, translational, and clinical studies. The Journal emphasizes novel approaches to help both to understand clinical phenomenon through basic science tools, and to translate basic science discoveries into the development of new strategies for the prevention, assessment, treatment, and enhancement of central nervous system repair after stroke and other forms of neurotrauma.
Translational Stroke Research focuses on translational research and is relevant to both basic scientists and physicians, including but not restricted to neuroscientists, vascular biologists, neurologists, neuroimagers, and neurosurgeons.