Effect of substrate mineralogy, biofilm and extracellular polymeric substances on bacterially induced carbonate mineralisation investigated with in situ nanoscale ToF-SIMS.
Anant Aishwarya Dubey, Pelina Toprak, Allan Pring, Carlos Rodriguez-Navarro, Abhijit Mukherjee, Navdeep K Dhami
{"title":"Effect of substrate mineralogy, biofilm and extracellular polymeric substances on bacterially induced carbonate mineralisation investigated with in situ nanoscale ToF-SIMS.","authors":"Anant Aishwarya Dubey, Pelina Toprak, Allan Pring, Carlos Rodriguez-Navarro, Abhijit Mukherjee, Navdeep K Dhami","doi":"10.1038/s41598-025-14083-z","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial mineralisation of calcium carbonates (CaCO<sub>3</sub>) has become a focal point of interest in the scientific community owing to their versatile applications as biomaterials. However, despite extensive research, the knowledge on factors influencing biogenic CaCO<sub>3</sub> polymorph (calcite, vaterite or aragonite) selection in nature remains obscure. Bacterial mineralisation happens in nature on diverse substrates by different pathways, often in the presence of organic matter such as biofilm and extracellular polymeric substances (EPS) secreted with the regular metabolic activities of microbes. This study examines the bacterial CaCO<sub>3</sub> mineralisation process by two distinct pathways on different natural substrates with advanced analytical techniques, including Time of Flight- Secondary Ions Mass Spectrometry (ToF-SIMS). A high EPS-producing microbe (Bacillus subtilis, BS) was compared with the standard ureolytic strain (Sporosarcina pasteurii, SP). Natural geological minerals, including apatite, calcite and quartz, were selected as substrates. This study demonstrates that SP favours the precipitation of rhombohedral calcite crystals (2 to 40 μm in size), regardless of the mineral substrate. In contrast, the EPS-producing BS culture induced the formation of significantly larger vaterite structures (20 to 100 μm in size) in spheroid and hexagonal shapes. The mineralogy of precipitates was confirmed with Raman spectroscopy. ToF-SIMS enabled the spatial tracking of organic macromolecules and the adsorption of calcium ions on them. The functional groups of the EPS involved in these interactions were characterised by Fourier Transform Infrared Spectroscopy (FTIR). This study reveals that microbial activity dominates over substrate mineralogy in selecting the phase and shaping the morphology of biogenic CaCO<sub>3</sub>, with EPS playing a crucial role in promoting the aggregation of small nanocrystals into large vaterite structures and their stabilisation.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"29368"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339710/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-14083-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial mineralisation of calcium carbonates (CaCO3) has become a focal point of interest in the scientific community owing to their versatile applications as biomaterials. However, despite extensive research, the knowledge on factors influencing biogenic CaCO3 polymorph (calcite, vaterite or aragonite) selection in nature remains obscure. Bacterial mineralisation happens in nature on diverse substrates by different pathways, often in the presence of organic matter such as biofilm and extracellular polymeric substances (EPS) secreted with the regular metabolic activities of microbes. This study examines the bacterial CaCO3 mineralisation process by two distinct pathways on different natural substrates with advanced analytical techniques, including Time of Flight- Secondary Ions Mass Spectrometry (ToF-SIMS). A high EPS-producing microbe (Bacillus subtilis, BS) was compared with the standard ureolytic strain (Sporosarcina pasteurii, SP). Natural geological minerals, including apatite, calcite and quartz, were selected as substrates. This study demonstrates that SP favours the precipitation of rhombohedral calcite crystals (2 to 40 μm in size), regardless of the mineral substrate. In contrast, the EPS-producing BS culture induced the formation of significantly larger vaterite structures (20 to 100 μm in size) in spheroid and hexagonal shapes. The mineralogy of precipitates was confirmed with Raman spectroscopy. ToF-SIMS enabled the spatial tracking of organic macromolecules and the adsorption of calcium ions on them. The functional groups of the EPS involved in these interactions were characterised by Fourier Transform Infrared Spectroscopy (FTIR). This study reveals that microbial activity dominates over substrate mineralogy in selecting the phase and shaping the morphology of biogenic CaCO3, with EPS playing a crucial role in promoting the aggregation of small nanocrystals into large vaterite structures and their stabilisation.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.