L L Bang, J S Pettersen, N Høiland, A M Rojek, D R Tornby, J Møller-Jensen, U S Justesen, R M Pedersen, T E Andersen
{"title":"An anaerobic in vitro flow model for studying interactions at the gastrointestinal host-microbe interface.","authors":"L L Bang, J S Pettersen, N Høiland, A M Rojek, D R Tornby, J Møller-Jensen, U S Justesen, R M Pedersen, T E Andersen","doi":"10.1038/s41522-025-00800-z","DOIUrl":null,"url":null,"abstract":"<p><p>In vitro research on host-microbe interactions in the human gut has been challenging due to the differing oxygen requirements of mammalian cells and intestinal microbiota. Few models of this environment have been developed, and those available are complex, limiting the extraction of important information during experiments. Here we report an in vitro model that by simple means creates an anaerobic environment for microbiota growing on living, cultured human epithelium under physiological flow. This model enables long-term co-culture of intestinal epithelial cells with obligate anaerobic bacteria, exemplified here by Clostridioides difficile and Bacteroides fragilis. Anaerobic conditions are maintained through the integration of an anaerobization unit, developed to facilitate online deoxygenation of media via liquid-to-liquid gas diffusion, eliminating the need for encapsulation in complex gas chambers. We show that stable oxygen levels of less than 1% can be maintained in the model for several days without compromising the viability of the intestinal epithelium. Furthermore, we demonstrate the performance of the model by simulating prolonged colonization with C. difficile and B. fragilis, as well as the clinically relevant persistence of C. difficile following treatment with vancomycin.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"160"},"PeriodicalIF":9.2000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12340051/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00800-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In vitro research on host-microbe interactions in the human gut has been challenging due to the differing oxygen requirements of mammalian cells and intestinal microbiota. Few models of this environment have been developed, and those available are complex, limiting the extraction of important information during experiments. Here we report an in vitro model that by simple means creates an anaerobic environment for microbiota growing on living, cultured human epithelium under physiological flow. This model enables long-term co-culture of intestinal epithelial cells with obligate anaerobic bacteria, exemplified here by Clostridioides difficile and Bacteroides fragilis. Anaerobic conditions are maintained through the integration of an anaerobization unit, developed to facilitate online deoxygenation of media via liquid-to-liquid gas diffusion, eliminating the need for encapsulation in complex gas chambers. We show that stable oxygen levels of less than 1% can be maintained in the model for several days without compromising the viability of the intestinal epithelium. Furthermore, we demonstrate the performance of the model by simulating prolonged colonization with C. difficile and B. fragilis, as well as the clinically relevant persistence of C. difficile following treatment with vancomycin.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.