S Parisien-La Salle, F Nobilleau, A da Silva Babinet, J Lamontagne, M Labrecque, B Rampal, C Mas, M Liao, V A Barragan Torres, G Corbeil, L Chatel-Chaix, M Dona, M Tétreault, I Bourdeau, É Samarut
{"title":"Rapid generation of a sdhb loss-of-function zebrafish model for secreting pheochromocytomas and paragangliomas.","authors":"S Parisien-La Salle, F Nobilleau, A da Silva Babinet, J Lamontagne, M Labrecque, B Rampal, C Mas, M Liao, V A Barragan Torres, G Corbeil, L Chatel-Chaix, M Dona, M Tétreault, I Bourdeau, É Samarut","doi":"10.1038/s41525-025-00518-z","DOIUrl":null,"url":null,"abstract":"<p><p>Genotype plays a central role in the comprehensive management of pheochromocytomas and paragangliomas, highlighting the critical need for specific in vivo genetic models. Yet, animal models fall short of fully recapitulating the biological complexity of these tumours. We generated first-generation loss-of-function zebrafish models for sdhb, a canonical PPGL-associated gene, using CRISPR/Cas9. Sdhb-CRISPants exhibit increased heart rates, reduced swimming activity and premature death. In whole fish extracts, normetanephrine (NM), metanephrine (MN), and dopamine (DA) levels were about three times higher in sdhb CRISPants than in control larvae. In the bathing medium, NM and MN were also significantly elevated, along with 3-MT. Complementary metabolic and transcriptomic profiling revealed that sdhb CRISPants exhibit a clear signature of Complex II dysfunction and upregulation of genes involved in the hypoxia response, angiogenesis, stress response, and glycolysis. Our work validates the relevance of CRISPant zebrafish models to study the pathogenicity of PPGL-causing genetic variants in vivo.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"10 1","pages":"59"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339709/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41525-025-00518-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Genotype plays a central role in the comprehensive management of pheochromocytomas and paragangliomas, highlighting the critical need for specific in vivo genetic models. Yet, animal models fall short of fully recapitulating the biological complexity of these tumours. We generated first-generation loss-of-function zebrafish models for sdhb, a canonical PPGL-associated gene, using CRISPR/Cas9. Sdhb-CRISPants exhibit increased heart rates, reduced swimming activity and premature death. In whole fish extracts, normetanephrine (NM), metanephrine (MN), and dopamine (DA) levels were about three times higher in sdhb CRISPants than in control larvae. In the bathing medium, NM and MN were also significantly elevated, along with 3-MT. Complementary metabolic and transcriptomic profiling revealed that sdhb CRISPants exhibit a clear signature of Complex II dysfunction and upregulation of genes involved in the hypoxia response, angiogenesis, stress response, and glycolysis. Our work validates the relevance of CRISPant zebrafish models to study the pathogenicity of PPGL-causing genetic variants in vivo.
NPJ Genomic MedicineBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
1.90%
发文量
67
审稿时长
17 weeks
期刊介绍:
npj Genomic Medicine is an international, peer-reviewed journal dedicated to publishing the most important scientific advances in all aspects of genomics and its application in the practice of medicine.
The journal defines genomic medicine as "diagnosis, prognosis, prevention and/or treatment of disease and disorders of the mind and body, using approaches informed or enabled by knowledge of the genome and the molecules it encodes." Relevant and high-impact papers that encompass studies of individuals, families, or populations are considered for publication. An emphasis will include coupling detailed phenotype and genome sequencing information, both enabled by new technologies and informatics, to delineate the underlying aetiology of disease. Clinical recommendations and/or guidelines of how that data should be used in the clinical management of those patients in the study, and others, are also encouraged.