Abhijith Punnappurath, Luxi Zhao, Hoang Le, Abdelrahman Abdelhamed, SaiKiran Kumar Tedla, Michael S Brown
{"title":"Improved mapping between illuminations and sensors for RAW images.","authors":"Abhijith Punnappurath, Luxi Zhao, Hoang Le, Abdelrahman Abdelhamed, SaiKiran Kumar Tedla, Michael S Brown","doi":"10.1364/JOSAA.561327","DOIUrl":null,"url":null,"abstract":"<p><p>RAW images are unprocessed camera sensor output with sensor-specific RGB values based on the sensor's color filter spectral sensitivities. RAW images also incur strong color casts due to the sensor's response to the spectral properties of scene illumination. The sensor- and illumination-specific nature of RAW images makes it challenging to capture RAW datasets for deep learning methods, as scenes need to be captured for each sensor and under a wide range of illumination. Methods for illumination augmentation for a given sensor and the ability to map RAW images between sensors are important for reducing the burden of data capture. To explore this problem, we introduce what we believe to be a first-of-its-kind dataset comprising carefully captured scenes under a wide range of illumination. Specifically, we use a customized lightbox with tunable illumination spectra to capture several scenes with different cameras. Our illumination and sensor mapping dataset has 390 illuminations, four cameras, and 18 scenes. Using this dataset, we introduce a lightweight neural network approach for illumination and sensor mapping that outperforms competing methods. We demonstrate the utility of our approach on the downstream task of training a neural ISP.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"42 8","pages":"1182-1190"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.561327","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
RAW images are unprocessed camera sensor output with sensor-specific RGB values based on the sensor's color filter spectral sensitivities. RAW images also incur strong color casts due to the sensor's response to the spectral properties of scene illumination. The sensor- and illumination-specific nature of RAW images makes it challenging to capture RAW datasets for deep learning methods, as scenes need to be captured for each sensor and under a wide range of illumination. Methods for illumination augmentation for a given sensor and the ability to map RAW images between sensors are important for reducing the burden of data capture. To explore this problem, we introduce what we believe to be a first-of-its-kind dataset comprising carefully captured scenes under a wide range of illumination. Specifically, we use a customized lightbox with tunable illumination spectra to capture several scenes with different cameras. Our illumination and sensor mapping dataset has 390 illuminations, four cameras, and 18 scenes. Using this dataset, we introduce a lightweight neural network approach for illumination and sensor mapping that outperforms competing methods. We demonstrate the utility of our approach on the downstream task of training a neural ISP.
期刊介绍:
The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as:
* Atmospheric optics
* Clinical vision
* Coherence and Statistical Optics
* Color
* Diffraction and gratings
* Image processing
* Machine vision
* Physiological optics
* Polarization
* Scattering
* Signal processing
* Thin films
* Visual optics
Also: j opt soc am a.