Depth estimation method based on adaptive occlusion handling for light-field imaging systems.

IF 1.5 3区 物理与天体物理 Q3 OPTICS
Anhu Li, Zhenyu Gong, Xin Zhao
{"title":"Depth estimation method based on adaptive occlusion handling for light-field imaging systems.","authors":"Anhu Li, Zhenyu Gong, Xin Zhao","doi":"10.1364/JOSAA.546671","DOIUrl":null,"url":null,"abstract":"<p><p>To solve the problem of poor depth estimation due to the influence of occlusion in light-field imaging systems, an embeddable adaptive occlusion-aware module (AOAM) is proposed to effectively compensate for the deficiencies of most existing frameworks. Considering the low computational resource consumption, an adaptive occlusion optimization mode is built that introduces a voting strategy. The beam propagation characteristics are analyzed to filter the disparity values, and the adaptive voting cost is utilized to achieve regional partitioning and noise reduction in the global domain. The superiority of the proposed method is validated on a common light-field dataset.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"42 8","pages":"1101-1111"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.546671","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

To solve the problem of poor depth estimation due to the influence of occlusion in light-field imaging systems, an embeddable adaptive occlusion-aware module (AOAM) is proposed to effectively compensate for the deficiencies of most existing frameworks. Considering the low computational resource consumption, an adaptive occlusion optimization mode is built that introduces a voting strategy. The beam propagation characteristics are analyzed to filter the disparity values, and the adaptive voting cost is utilized to achieve regional partitioning and noise reduction in the global domain. The superiority of the proposed method is validated on a common light-field dataset.

基于自适应遮挡处理的光场成像系统深度估计方法。
为了解决光场成像系统中由于遮挡影响导致深度估计差的问题,提出了一种可嵌入的自适应遮挡感知模块(AOAM),有效地弥补了现有框架的不足。考虑到低计算资源消耗,建立了一种引入投票策略的自适应遮挡优化模式。分析波束传播特性,过滤视差值,利用自适应投票代价实现区域划分和全局降噪。在一个普通光场数据集上验证了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
10.50%
发文量
417
审稿时长
3 months
期刊介绍: The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as: * Atmospheric optics * Clinical vision * Coherence and Statistical Optics * Color * Diffraction and gratings * Image processing * Machine vision * Physiological optics * Polarization * Scattering * Signal processing * Thin films * Visual optics Also: j opt soc am a.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信