Robust ESPI fringe pattern denoising method using the Restormer Partial Differential Network (Res-PDNet).

IF 1.5 3区 物理与天体物理 Q3 OPTICS
Wen Wang, Pengyan Ren, Zhitao Xiao, Mingyue Zhu, Yu Miao, Fang Zhang
{"title":"Robust ESPI fringe pattern denoising method using the Restormer Partial Differential Network (Res-PDNet).","authors":"Wen Wang, Pengyan Ren, Zhitao Xiao, Mingyue Zhu, Yu Miao, Fang Zhang","doi":"10.1364/JOSAA.560650","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic speckle pattern interferometry (ESPI) is an important non-destructive testing technique. Denoising the interference fringe pattern is the key link of this technique as well as a hot spot of current research. In this work, we introduce the Restormer Partial Differential Network (Res-PDNet) for ESPI fringe denoising. The method uses PDNet as the base network, which combines the partial differential equation denoising idea and deep learning model, and optimizes the network according to the characteristics of the fringe patterns. In order to balance fringe denoising and structure preservation, our approach incorporates two key enhancements. First, Multi-Dconv Head Transposed Attention and Gated-Dconv Feed-Forward Network modules of Restormer are added after the residual blocks of PDNet, which allows the network to capture more information about the fringe structure and texture. Second, orientation constraints of the fringe pattern are introduced in the loss function to further protect the fringe shape. The Res-PDNet network can accurately recognize the fringe structure and maintain the fringe shape while filtering out noise. It has a good denoising effect on the electron scattering interference fringe pattern.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"42 7","pages":"978-988"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.560650","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Electronic speckle pattern interferometry (ESPI) is an important non-destructive testing technique. Denoising the interference fringe pattern is the key link of this technique as well as a hot spot of current research. In this work, we introduce the Restormer Partial Differential Network (Res-PDNet) for ESPI fringe denoising. The method uses PDNet as the base network, which combines the partial differential equation denoising idea and deep learning model, and optimizes the network according to the characteristics of the fringe patterns. In order to balance fringe denoising and structure preservation, our approach incorporates two key enhancements. First, Multi-Dconv Head Transposed Attention and Gated-Dconv Feed-Forward Network modules of Restormer are added after the residual blocks of PDNet, which allows the network to capture more information about the fringe structure and texture. Second, orientation constraints of the fringe pattern are introduced in the loss function to further protect the fringe shape. The Res-PDNet network can accurately recognize the fringe structure and maintain the fringe shape while filtering out noise. It has a good denoising effect on the electron scattering interference fringe pattern.

基于复原偏微分网络(Res-PDNet)的鲁棒ESPI条纹图去噪方法。
电子散斑干涉技术是一种重要的无损检测技术。干涉条纹图的去噪是该技术的关键环节,也是当前研究的热点。在这项工作中,我们介绍了用于ESPI条纹去噪的复原偏微分网络(Res-PDNet)。该方法以PDNet为基础网络,结合偏微分方程去噪思想和深度学习模型,根据条纹图案的特点对网络进行优化。为了平衡条纹去噪和结构保留,我们的方法包含两个关键的增强。首先,在PDNet残差块的基础上,加入恢复器的Multi-Dconv头部转置注意和gate - dconv前馈网络模块,使网络能够捕获更多的条纹结构和纹理信息;其次,在损失函数中引入条纹方向约束,进一步保护条纹形状;Res-PDNet网络能够在滤除噪声的同时准确识别条纹结构并保持条纹形状。对电子散射干涉条纹图有较好的去噪效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
10.50%
发文量
417
审稿时长
3 months
期刊介绍: The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as: * Atmospheric optics * Clinical vision * Coherence and Statistical Optics * Color * Diffraction and gratings * Image processing * Machine vision * Physiological optics * Polarization * Scattering * Signal processing * Thin films * Visual optics Also: j opt soc am a.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信