Helical Ince-Gaussian laser beams as superpositions of Hermite-Gaussian beams.

IF 1.5 3区 物理与天体物理 Q3 OPTICS
Eugeny G Abramochkin, Victor V Kotlyar, Alexey A Kovalev
{"title":"Helical Ince-Gaussian laser beams as superpositions of Hermite-Gaussian beams.","authors":"Eugeny G Abramochkin, Victor V Kotlyar, Alexey A Kovalev","doi":"10.1364/JOSAA.558038","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we theoretically and numerically analyze helical Ince-Gaussian (hIG) modes, <i>h</i><i>I</i><i>G</i><sub><i>p</i>,<i>q</i></sub>(<i>x</i>,<i>y</i>,<i>ε</i>). We derive explicit analytical relationships to describe the <i>ε</i>-dependence (where <i>ε</i> is the ellipticity parameter) of the orbital angular momentum (OAM) of <i>h</i><i>I</i><i>G</i><sub><i>p</i>,<i>q</i></sub>(<i>x</i>,<i>y</i>,<i>ε</i>) modes at <i>p</i>=2,3,4,5. The derivation procedure relies on expansions of the hIG modes in terms of Hermite-Gaussian modes. It is shown that in the general case, the OAM is an even function of <i>ε</i> and exhibits no monotonic behavior with <i>ε</i> varying from zero to plus and minus infinity.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"42 6","pages":"780-787"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.558038","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we theoretically and numerically analyze helical Ince-Gaussian (hIG) modes, hIGp,q(x,y,ε). We derive explicit analytical relationships to describe the ε-dependence (where ε is the ellipticity parameter) of the orbital angular momentum (OAM) of hIGp,q(x,y,ε) modes at p=2,3,4,5. The derivation procedure relies on expansions of the hIG modes in terms of Hermite-Gaussian modes. It is shown that in the general case, the OAM is an even function of ε and exhibits no monotonic behavior with ε varying from zero to plus and minus infinity.

作为厄米-高斯光束叠加的螺旋inces - gaussian激光束。
在这项工作中,我们从理论上和数值上分析了螺旋inces - gaussian (hIG)模式,hIGp,q(x,y,ε)。我们导出了在p=2,3,4,5处,hIGp,q(x,y,ε)模式的轨道角动量(OAM)的ε依赖关系(其中ε为椭圆性参数)。推导过程依赖于hIG模态在厄米-高斯模态方面的展开。结果表明,在一般情况下,OAM是ε的偶函数,当ε从0到正负无穷变化时,OAM不表现单调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
10.50%
发文量
417
审稿时长
3 months
期刊介绍: The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as: * Atmospheric optics * Clinical vision * Coherence and Statistical Optics * Color * Diffraction and gratings * Image processing * Machine vision * Physiological optics * Polarization * Scattering * Signal processing * Thin films * Visual optics Also: j opt soc am a.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信