Alyssa Risner, Joyce Nair-Menon, Abhinav Cheedipudi, Joe R Delaney, Vamsi Gangaraju, Antonis Kourtidis
{"title":"PIWIL2 downregulation in colon cancer promotes transposon activity and pro-tumorigenic phenotypes.","authors":"Alyssa Risner, Joyce Nair-Menon, Abhinav Cheedipudi, Joe R Delaney, Vamsi Gangaraju, Antonis Kourtidis","doi":"10.1242/bio.061942","DOIUrl":null,"url":null,"abstract":"<p><p>Reactivation of transposable elements (TEs) in somatic tissues, particularly of LINE-1, is associated with disease by causing gene mutations and DNA damage. Previous work has shown that the PIWI pathway is crucial for TE suppression in the germline. However, the status and function of this pathway is not well characterized in differentiated somatic cells and there is a lack of consensus on the role of the pathway in somatic tumorigenesis. To shed light on this conundrum, we examined the PIWI pathway in colon cancer through combining bioinformatic analyses and cell-based assays. Shifted weighted annotation network (SWAN) analysis revealed that the pathway experiences significant allelic losses in colon cancer and that PIWIL2, the main catalytic component of the pathway responsible for TE silencing, experiences the highest percent deletions. PIWIL2 is downregulated in colon tumors of advanced stage, nodal metastasis, and in certain subtypes, correlating with poor survival, while it is also downregulated in ulcerative colitis, an inflammatory bowel disease that predisposes to colon cancer. PIWIL2 depletion in colon epithelial Caco2 cells leads to increased anchorage-independent growth, decreased levels of TE-targeting non-canonical piRNAs, increased LINE-1 levels and activity, and in DNA damage, altogether highlighting a tumor-suppressing role of PIWIL2 in the colon.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12444863/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Open","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.061942","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Reactivation of transposable elements (TEs) in somatic tissues, particularly of LINE-1, is associated with disease by causing gene mutations and DNA damage. Previous work has shown that the PIWI pathway is crucial for TE suppression in the germline. However, the status and function of this pathway is not well characterized in differentiated somatic cells and there is a lack of consensus on the role of the pathway in somatic tumorigenesis. To shed light on this conundrum, we examined the PIWI pathway in colon cancer through combining bioinformatic analyses and cell-based assays. Shifted weighted annotation network (SWAN) analysis revealed that the pathway experiences significant allelic losses in colon cancer and that PIWIL2, the main catalytic component of the pathway responsible for TE silencing, experiences the highest percent deletions. PIWIL2 is downregulated in colon tumors of advanced stage, nodal metastasis, and in certain subtypes, correlating with poor survival, while it is also downregulated in ulcerative colitis, an inflammatory bowel disease that predisposes to colon cancer. PIWIL2 depletion in colon epithelial Caco2 cells leads to increased anchorage-independent growth, decreased levels of TE-targeting non-canonical piRNAs, increased LINE-1 levels and activity, and in DNA damage, altogether highlighting a tumor-suppressing role of PIWIL2 in the colon.
期刊介绍:
Biology Open (BiO) is an online Open Access journal that publishes peer-reviewed original research across all aspects of the biological sciences. BiO aims to provide rapid publication for scientifically sound observations and valid conclusions, without a requirement for perceived impact.