{"title":"A simple, fast and inexpensive approach using E. coli to detect and estimate vitamin B12 content in microbial extracts.","authors":"Katarzyna Hencel, Matthew J Sullivan, Alper Akay","doi":"10.1242/bio.062017","DOIUrl":null,"url":null,"abstract":"<p><p>Vitamin B12 is an essential micronutrient produced only by prokaryotes, and animals must acquire it from their diet. Vitamin B12 is critical for the synthesis of methionine and propionyl-CoA metabolism. In humans, vitamin B12 deficiency has been linked to many disorders, including infertility and developmental abnormalities. The growing trend towards plant-based diets and ageing populations increases the risk of vitamin B12 deficiency, and, therefore, there is an increasing interest in understanding vitamin B12 biology. Accurate approaches for detecting and quantifying vitamin B12 are essential in studying its complex biology, from its biogenesis in Bacteria and Archaea to its effects in complex organisms. Here, we present an approach using the commonly available E. coli methionine auxotroph strain B834 (DE3) and a multi-well spectrophotometer to detect and estimate the levels of vitamin B12 from biological samples at picomolar concentrations. We further show that our method is sufficient to reveal important differences in the production of vitamin B12 from vitamin B12-synthesising bacteria commonly found in the microbiome of wild Caenorhabditis elegans isolates. Our results establish a high-throughput and simple assay platform for detecting and estimating vitamin B12 levels using the E. coli B834 (DE3) strain.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12444877/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Open","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.062017","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vitamin B12 is an essential micronutrient produced only by prokaryotes, and animals must acquire it from their diet. Vitamin B12 is critical for the synthesis of methionine and propionyl-CoA metabolism. In humans, vitamin B12 deficiency has been linked to many disorders, including infertility and developmental abnormalities. The growing trend towards plant-based diets and ageing populations increases the risk of vitamin B12 deficiency, and, therefore, there is an increasing interest in understanding vitamin B12 biology. Accurate approaches for detecting and quantifying vitamin B12 are essential in studying its complex biology, from its biogenesis in Bacteria and Archaea to its effects in complex organisms. Here, we present an approach using the commonly available E. coli methionine auxotroph strain B834 (DE3) and a multi-well spectrophotometer to detect and estimate the levels of vitamin B12 from biological samples at picomolar concentrations. We further show that our method is sufficient to reveal important differences in the production of vitamin B12 from vitamin B12-synthesising bacteria commonly found in the microbiome of wild Caenorhabditis elegans isolates. Our results establish a high-throughput and simple assay platform for detecting and estimating vitamin B12 levels using the E. coli B834 (DE3) strain.
期刊介绍:
Biology Open (BiO) is an online Open Access journal that publishes peer-reviewed original research across all aspects of the biological sciences. BiO aims to provide rapid publication for scientifically sound observations and valid conclusions, without a requirement for perceived impact.