Rongjing Xie, Han Yu, Yan Wang, Ka Yin Leung, Olivier Habimana
{"title":"Synergistic effects of sodium acetate and calcium on structure and function in multispecies biofilms.","authors":"Rongjing Xie, Han Yu, Yan Wang, Ka Yin Leung, Olivier Habimana","doi":"10.1080/08927014.2025.2545940","DOIUrl":null,"url":null,"abstract":"<p><p>This investigation scrutinizes the manner in which sodium acetate (SA) and calcium cations (Ca<sup>2+</sup>) independently and collaboratively affect biofilm development. Confocal microscopy revealed that SA (1 mM) increased biofilm biovolume (5.5-fold) and thickness by enhancing microbial growth, while Ca<sup>2+</sup> (1.5 mM) stabilized the matrix <i>via</i> EPS crosslinking. Combined, SA and Ca<sup>2+</sup> synergistically boosted biovolume (1.5-fold) and thickness (21.3 µm) compared to SA alone. 16S rRNA sequencing showed SA-enriched <i>Actinobacteriota</i> (11%) and exopolysaccharide-producing <i>Brevifollis</i>, whereas Ca<sup>2+</sup> improved surface coverage (22.3%). Functional predictions linked SA to purine degradation and Ca<sup>2+</sup> to fatty acid oxidation, aligning with EPS modifications. These findings highlight how carbon sources and divalent cations collaboratively shape biofilm resilience, offering insights for biofilm management in environmental, industrial, and medical settings where SA and Ca<sup>2+</sup> gradients exist.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"865-880"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2025.2545940","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This investigation scrutinizes the manner in which sodium acetate (SA) and calcium cations (Ca2+) independently and collaboratively affect biofilm development. Confocal microscopy revealed that SA (1 mM) increased biofilm biovolume (5.5-fold) and thickness by enhancing microbial growth, while Ca2+ (1.5 mM) stabilized the matrix via EPS crosslinking. Combined, SA and Ca2+ synergistically boosted biovolume (1.5-fold) and thickness (21.3 µm) compared to SA alone. 16S rRNA sequencing showed SA-enriched Actinobacteriota (11%) and exopolysaccharide-producing Brevifollis, whereas Ca2+ improved surface coverage (22.3%). Functional predictions linked SA to purine degradation and Ca2+ to fatty acid oxidation, aligning with EPS modifications. These findings highlight how carbon sources and divalent cations collaboratively shape biofilm resilience, offering insights for biofilm management in environmental, industrial, and medical settings where SA and Ca2+ gradients exist.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.