Regulation of Microstructure and Absorption Properties of MXene Materials: Theoretical and Experimental.

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qiang Wang, Xiaolei Su, Yan Jia, Yi Liu, Faisal Shahzad
{"title":"Regulation of Microstructure and Absorption Properties of MXene Materials: Theoretical and Experimental.","authors":"Qiang Wang, Xiaolei Su, Yan Jia, Yi Liu, Faisal Shahzad","doi":"10.1002/advs.202509994","DOIUrl":null,"url":null,"abstract":"<p><p>This study systematically investigates the modulation mechanism of transition metal elements (Ti, Nb, Ta, V) on the microwave absorption performance of MXenes (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>, Ti<sub>2</sub>NbC<sub>2</sub>Tx, Ti<sub>2</sub>TaC<sub>2</sub>T<sub>x</sub>, Ti<sub>2</sub>VC<sub>2</sub>T<sub>x</sub>, Nb<sub>2</sub>CT<sub>x</sub>, V<sub>2</sub>CT<sub>x</sub>). Using multiscale characterization techniques, the microstructure, elemental distribution, and surface chemical states of these materials are comprehensively analyzed. Integrated electromagnetic parameter measurements and theoretical calculations elucidate the physical mechanisms underlying their distinct microwave absorption behaviors. Experimental results reveal that the single-metal V-based MXene V<sub>2</sub>CT<sub>x</sub> exhibits outstanding X-band (8.2-12.4 GHz) absorption performance, achieving an ultralow RL of -53.8 dB and a broad effective absorption bandwidth of 3.4 GHz. Theoretical calculations indicate that V's multivalent d-orbitals generate pronounced density of states (DOS) peaks near the Fermi level, significantly enhancing carrier mobility and wave-carrier interactions. Normalized impedance analysis confirms excellent impedance matching with free space, a critical factor for minimizing microwave reflection and maximizing energy dissipation. In contrast, Ti-, Nb-, and Ta-based MXenes show limited performance, primarily relying on single loss mechanisms that fail to balance impedance and dissipation efficiently. The findings provide theoretical guidance for designing high-performance broadband microwave absorbers by tailoring atomic-scale composition to optimize impedance matching and multi-mechanistic energy dissipation in MXene-based materials.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e09994"},"PeriodicalIF":14.1000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202509994","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study systematically investigates the modulation mechanism of transition metal elements (Ti, Nb, Ta, V) on the microwave absorption performance of MXenes (Ti3C2Tx, Ti2NbC2Tx, Ti2TaC2Tx, Ti2VC2Tx, Nb2CTx, V2CTx). Using multiscale characterization techniques, the microstructure, elemental distribution, and surface chemical states of these materials are comprehensively analyzed. Integrated electromagnetic parameter measurements and theoretical calculations elucidate the physical mechanisms underlying their distinct microwave absorption behaviors. Experimental results reveal that the single-metal V-based MXene V2CTx exhibits outstanding X-band (8.2-12.4 GHz) absorption performance, achieving an ultralow RL of -53.8 dB and a broad effective absorption bandwidth of 3.4 GHz. Theoretical calculations indicate that V's multivalent d-orbitals generate pronounced density of states (DOS) peaks near the Fermi level, significantly enhancing carrier mobility and wave-carrier interactions. Normalized impedance analysis confirms excellent impedance matching with free space, a critical factor for minimizing microwave reflection and maximizing energy dissipation. In contrast, Ti-, Nb-, and Ta-based MXenes show limited performance, primarily relying on single loss mechanisms that fail to balance impedance and dissipation efficiently. The findings provide theoretical guidance for designing high-performance broadband microwave absorbers by tailoring atomic-scale composition to optimize impedance matching and multi-mechanistic energy dissipation in MXene-based materials.

MXene材料的微观结构和吸收性能调控:理论与实验。
本研究系统探讨了过渡金属元素(Ti、Nb、Ta、V)对MXenes (Ti3C2Tx、Ti2NbC2Tx、Ti2TaC2Tx、Ti2VC2Tx、Nb2CTx、V2CTx)微波吸收性能的调制机理。利用多尺度表征技术,全面分析了这些材料的微观结构、元素分布和表面化学状态。综合电磁参数测量和理论计算阐明了其独特的微波吸收行为的物理机制。实验结果表明,单金属v基MXene V2CTx具有出色的x波段(8.2-12.4 GHz)吸收性能,实现了-53.8 dB的超低RL和3.4 GHz的宽有效吸收带宽。理论计算表明,V的多价d轨道在费米能级附近产生明显的态密度(DOS)峰,显著增强载流子迁移率和波载流子相互作用。归一化阻抗分析证实了与自由空间的良好阻抗匹配,这是最小化微波反射和最大化能量耗散的关键因素。相比之下,基于Ti、Nb和ta的MXenes表现出有限的性能,主要依赖于单一的损耗机制,无法有效地平衡阻抗和耗散。研究结果为设计高性能宽带微波吸收材料提供了理论指导,通过调整原子尺度组成来优化mxene基材料的阻抗匹配和多机制能量耗散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信