Cryptographic Metasurface Enabled High-Security Information Authentication Using Dual-Beam Off-Axis Illumination

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhenfei Li, Yuhang Zhang, Shaojie Liu, Jiaru Lin, Xianfeng Wu, Shuo Du, Xudong Bai, Kun Song*, Yahong Liu, Ruonan Ji, Weiren Zhu, Guangzhou Geng* and Xiaopeng Zhao, 
{"title":"Cryptographic Metasurface Enabled High-Security Information Authentication Using Dual-Beam Off-Axis Illumination","authors":"Zhenfei Li,&nbsp;Yuhang Zhang,&nbsp;Shaojie Liu,&nbsp;Jiaru Lin,&nbsp;Xianfeng Wu,&nbsp;Shuo Du,&nbsp;Xudong Bai,&nbsp;Kun Song*,&nbsp;Yahong Liu,&nbsp;Ruonan Ji,&nbsp;Weiren Zhu,&nbsp;Guangzhou Geng* and Xiaopeng Zhao,&nbsp;","doi":"10.1021/acsphotonics.5c00770","DOIUrl":null,"url":null,"abstract":"<p >Optical information security has become paramount in data-driven technological systems, where metasurface holography has emerged as a transformative paradigm for high-density optical encryption. However, conventional methods remain constrained by fundamental limitations: multiplexed architectures suffer from inherent interchannel crosstalk, while complex cryptographic algorithms introduce impractical computational overhead. Here, we present a breakthrough visual cryptography platform that utilizes a metasurface hologram with dual-beam off-axis illumination for shared information encryption. The cryptographic scheme physically encodes secret information into the geometric phase profile of metasurface-engineered ciphertexts, with decryption strictly requiring synchronized dual-beam off-axis illumination at predetermined angular configurations. Crucially, single-beam interrogation yields only stochastic speckle-like patterns through partial phase retrieval, providing inherent security against unauthorized access. This architecture achieves channel-independent encryption through angular freedom manipulation, eliminating interchannel crosstalk while preventing potential information leakage through spatial frequency separation mechanisms. The off-axis design not only increases the information capacity, but also establishes a multilayered security framework through the angular degrees of freedom. Both numerical simulations and experimental results validate the effectiveness of the proposed method and demonstrate robust encryption and decryption performance. Our method balances encryption complexity and security, providing a promising solution for next-generation optical encryption devices.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 8","pages":"4406–4414"},"PeriodicalIF":6.7000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.5c00770","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Optical information security has become paramount in data-driven technological systems, where metasurface holography has emerged as a transformative paradigm for high-density optical encryption. However, conventional methods remain constrained by fundamental limitations: multiplexed architectures suffer from inherent interchannel crosstalk, while complex cryptographic algorithms introduce impractical computational overhead. Here, we present a breakthrough visual cryptography platform that utilizes a metasurface hologram with dual-beam off-axis illumination for shared information encryption. The cryptographic scheme physically encodes secret information into the geometric phase profile of metasurface-engineered ciphertexts, with decryption strictly requiring synchronized dual-beam off-axis illumination at predetermined angular configurations. Crucially, single-beam interrogation yields only stochastic speckle-like patterns through partial phase retrieval, providing inherent security against unauthorized access. This architecture achieves channel-independent encryption through angular freedom manipulation, eliminating interchannel crosstalk while preventing potential information leakage through spatial frequency separation mechanisms. The off-axis design not only increases the information capacity, but also establishes a multilayered security framework through the angular degrees of freedom. Both numerical simulations and experimental results validate the effectiveness of the proposed method and demonstrate robust encryption and decryption performance. Our method balances encryption complexity and security, providing a promising solution for next-generation optical encryption devices.

Abstract Image

Abstract Image

使用双光束离轴照明的加密metassurface启用高安全信息认证
光学信息安全在数据驱动的技术系统中变得至关重要,其中超表面全息术已经成为高密度光学加密的变革范例。然而,传统方法仍然受到基本限制的约束:多路复用架构遭受固有的信道间串扰,而复杂的加密算法引入了不切实际的计算开销。在这里,我们提出了一个突破性的视觉加密平台,该平台利用双光束离轴照明的超表面全息图进行共享信息加密。该加密方案将秘密信息物理地编码到超表面工程密文的几何相位剖面中,解密严格要求在预定的角度配置下同步双光束离轴照明。最关键的是,单光束审讯通过部分相位检索只产生随机的斑点状图案,提供了对未经授权访问的固有安全性。该架构通过角自由操作实现信道无关加密,消除信道间串扰,同时通过空间频率分离机制防止潜在的信息泄露。离轴设计不仅增加了信息容量,而且通过角度自由度建立了多层安全框架。数值模拟和实验结果验证了该方法的有效性,并展示了鲁棒的加解密性能。我们的方法平衡了加密的复杂性和安全性,为下一代光加密设备提供了一个有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信