{"title":"Scratch-induced damage of doped DLC and MoS2 coatings—Deep symbolic analysis","authors":"Ming Liu, Zhitong Xu, Noraphat Yuktanan, Tang Gu, Guangan Zhang, Jinyang Jiang, Fuqian Yang, Rui Liang","doi":"10.26599/frict.2025.9441166","DOIUrl":null,"url":null,"abstract":"<p>Understanding contact-induced damage is of paramount importance in the analysis of the lifespan and performance of surface coatings. In this work, we investigate the effects of dopants and interlayers on the structural durability of diamond-like carbon coatings (DLCs) and molybdenum disulfide (MoS<sub>2</sub>) coatings on stainless steel via micro-scratch tests. The analysis of XPS survey spectra and Raman spectra of DLCs shows that the ratio of sp<sup>2</sup>/sp<sup>3</sup> (i.e., the intensity ratio of sp<sup>2</sup> over sp<sup>3</sup> obtained by XPS) is proportional to <em>I</em><sub>D</sub>/<em>I</em><sub>G</sub>, where <em>I</em><sub>D</sub> and <em>I</em><sub>G</sub> are the intensities of D and G bands of the Raman spectra. The analysis of the scratch tests reveals that there are three critical loads for the scratch-induced damage of the DLCs and MoS<sub>2</sub> coatings, corresponding, respectively, to the initiation of periodic V-cracking, the minimum load for periodic semicircle cracking or peel-off, and the minimum load for partial and periodic delamination. Dopants can reduce the friction coefficient of the DLCs and have negligible effect on the Ti/MoS<sub>2</sub> coatings. The Cr interlayer can better enhance the bonding strength between the DLCs and the steel substrate than the Si interlayer. Doping Cr and H can reduce the<em> </em>hardness of DLCs; doping Si can increase the hardness of the<em> </em>DLCs; and doping Ti, Pb, and PbTi can reduce the hardness of the MoS<sub>2</sub> coatings. Deep Symbolic Optimization (DSO) algorithm is used to establish nominal-mathematical formulations between the critical variables for the scratch test and the materials parameters of the surface coating. The DSO analysis demonstrates the feasibility of using “deep-learning” to establish “quantitative” relationships between the critical variables for mechanical deformation and materials parameters.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"167 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441166","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding contact-induced damage is of paramount importance in the analysis of the lifespan and performance of surface coatings. In this work, we investigate the effects of dopants and interlayers on the structural durability of diamond-like carbon coatings (DLCs) and molybdenum disulfide (MoS2) coatings on stainless steel via micro-scratch tests. The analysis of XPS survey spectra and Raman spectra of DLCs shows that the ratio of sp2/sp3 (i.e., the intensity ratio of sp2 over sp3 obtained by XPS) is proportional to ID/IG, where ID and IG are the intensities of D and G bands of the Raman spectra. The analysis of the scratch tests reveals that there are three critical loads for the scratch-induced damage of the DLCs and MoS2 coatings, corresponding, respectively, to the initiation of periodic V-cracking, the minimum load for periodic semicircle cracking or peel-off, and the minimum load for partial and periodic delamination. Dopants can reduce the friction coefficient of the DLCs and have negligible effect on the Ti/MoS2 coatings. The Cr interlayer can better enhance the bonding strength between the DLCs and the steel substrate than the Si interlayer. Doping Cr and H can reduce thehardness of DLCs; doping Si can increase the hardness of theDLCs; and doping Ti, Pb, and PbTi can reduce the hardness of the MoS2 coatings. Deep Symbolic Optimization (DSO) algorithm is used to establish nominal-mathematical formulations between the critical variables for the scratch test and the materials parameters of the surface coating. The DSO analysis demonstrates the feasibility of using “deep-learning” to establish “quantitative” relationships between the critical variables for mechanical deformation and materials parameters.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.