Passive demultiplexed two-photon state generation from a quantum dot

IF 8.3 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Yusuf Karli, Iker Avila Arenas, Christian Schimpf, Ailton Jose Garcia Junior, Santanu Manna, Florian Kappe, René Schwarz, Gabriel Undeutsch, Maximilian Aigner, Melina Peter, Saimon F. Covre da Silva, Armando Rastelli, Gregor Weihs, Vikas Remesh
{"title":"Passive demultiplexed two-photon state generation from a quantum dot","authors":"Yusuf Karli, Iker Avila Arenas, Christian Schimpf, Ailton Jose Garcia Junior, Santanu Manna, Florian Kappe, René Schwarz, Gabriel Undeutsch, Maximilian Aigner, Melina Peter, Saimon F. Covre da Silva, Armando Rastelli, Gregor Weihs, Vikas Remesh","doi":"10.1038/s41534-025-01083-0","DOIUrl":null,"url":null,"abstract":"<p>High-purity multi-photon states are essential for photonic quantum computing. Among existing platforms, semiconductor quantum dots offer a promising route to scalable and deterministic multi-photon state generation. However, to fully realize their potential, we require a suitable optical excitation method. Current approaches to multi-photon generation rely on active polarization-switching elements (e.g., electro-optic modulators, EOMs) to spatio-temporally demultiplex single photons. Yet, the achievable multi-photon rate is fundamentally limited by the switching speed of the EOM. Here, we introduce a fully passive demultiplexing technique that leverages a stimulated two-photon excitation process to achieve switching rates only limited by the quantum dot lifetime. We demonstrate this method by generating two-photon states from a single quantum dot without requiring active switching elements. Our approach significantly reduces the cost of demultiplexing while shifting it to the excitation stage, enabling loss-free demultiplexing and effectively doubling the achievable multi-photon generation rate when combined with existing active demultiplexing techniques.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"18 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01083-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

High-purity multi-photon states are essential for photonic quantum computing. Among existing platforms, semiconductor quantum dots offer a promising route to scalable and deterministic multi-photon state generation. However, to fully realize their potential, we require a suitable optical excitation method. Current approaches to multi-photon generation rely on active polarization-switching elements (e.g., electro-optic modulators, EOMs) to spatio-temporally demultiplex single photons. Yet, the achievable multi-photon rate is fundamentally limited by the switching speed of the EOM. Here, we introduce a fully passive demultiplexing technique that leverages a stimulated two-photon excitation process to achieve switching rates only limited by the quantum dot lifetime. We demonstrate this method by generating two-photon states from a single quantum dot without requiring active switching elements. Our approach significantly reduces the cost of demultiplexing while shifting it to the excitation stage, enabling loss-free demultiplexing and effectively doubling the achievable multi-photon generation rate when combined with existing active demultiplexing techniques.

Abstract Image

从量子点产生无源解复用双光子态
高纯度多光子态是光子量子计算的基础。在现有的平台中,半导体量子点为可扩展和确定性的多光子态生成提供了一条有前途的途径。然而,为了充分发挥它们的潜力,我们需要一种合适的光激发方法。当前的多光子产生方法依赖于有源偏振开关元件(例如,电光调制器,EOMs)来实现单光子的时空解复用。然而,可实现的多光子速率从根本上受到EOM开关速度的限制。在这里,我们介绍了一种全被动解复用技术,该技术利用受激双光子激发过程来实现仅受量子点寿命限制的开关速率。我们通过在不需要有源开关元件的情况下从单个量子点产生双光子态来证明这种方法。我们的方法显著降低了解复用的成本,同时将其转移到激励阶段,实现无损失的解复用,并有效地将可实现的多光子产生速率与现有的有源解复用技术相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信