Ran Li, Yuheng Bai, Maqiang Zhao, Xinyue Zhang, Haiyan Wang, Bo Feng, Shuo Zhang, Huanhuan Zhang, Gang Ren, Xihong Wang, Yu Jiang
{"title":"Fine mapping genetic variants affecting birth weight in sheep: a GWAS of 3007 individuals using low-coverage whole genome sequencing","authors":"Ran Li, Yuheng Bai, Maqiang Zhao, Xinyue Zhang, Haiyan Wang, Bo Feng, Shuo Zhang, Huanhuan Zhang, Gang Ren, Xihong Wang, Yu Jiang","doi":"10.1186/s40104-025-01251-4","DOIUrl":null,"url":null,"abstract":"Birth weight is a critical economic trait in livestock production. However, its genetic architecture remains poorly understood due to historical limitations in sample size and reliance on low-density SNP arrays. In this study, we utilized low-coverage whole-genome sequencing (lcWGS) to genotype 3,007 Hu sheep, bypassing the cost and resolution constraints of conventional genotyping arrays while achieving scalable genome-wide variant detection. LcWGS with high imputation accuracy (97.8% allelic concordance) enabled genome-wide association studies (GWAS) identifying two novel quantitative trait loci (QTLs) on chromosomes 6 and 9. The chromosome 9 QTL encompassed a regulatory region functionally linked to PLAG1 expression through expression quantitative trait locus (eQTL) mapping. Compared with wild-type homozygotes, heterozygous carriers of the lead SNP (chr9:g.35920172A > G) presented a 9.85% increase in birth weight (3.35 kg vs. 3.68 kg; Δ = 0.33 kg). Notably, the derived allele of this SNP exhibited low frequencies of < 0.1 across most global sheep breeds except Dorper, highlighting its potential for selective breeding applications. Leveraging lcWGS data, haplotype-based fine-mapping prioritized three candidate causal variants. A secondary QTL on chromosome 6 colocalized with the FecB mutation, a well-established locus associated with increased litter size. Intriguingly, individuals carrying one FecB allele showed a 6.18% reduction (0.22 kg) in birth weight, which tentatively indicates potential pleiotropic influences on both growth and reproductive traits. This study demonstrates the utility of lcWGS as a cost-effective, high-resolution tool for dissecting complex traits in livestock. Our findings not only advance the understanding of birth weight genetics in sheep but also offer a blueprint for accelerating genetic improvement programs in global livestock production through cost-effective, genome-wide approaches.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"16 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s40104-025-01251-4","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Birth weight is a critical economic trait in livestock production. However, its genetic architecture remains poorly understood due to historical limitations in sample size and reliance on low-density SNP arrays. In this study, we utilized low-coverage whole-genome sequencing (lcWGS) to genotype 3,007 Hu sheep, bypassing the cost and resolution constraints of conventional genotyping arrays while achieving scalable genome-wide variant detection. LcWGS with high imputation accuracy (97.8% allelic concordance) enabled genome-wide association studies (GWAS) identifying two novel quantitative trait loci (QTLs) on chromosomes 6 and 9. The chromosome 9 QTL encompassed a regulatory region functionally linked to PLAG1 expression through expression quantitative trait locus (eQTL) mapping. Compared with wild-type homozygotes, heterozygous carriers of the lead SNP (chr9:g.35920172A > G) presented a 9.85% increase in birth weight (3.35 kg vs. 3.68 kg; Δ = 0.33 kg). Notably, the derived allele of this SNP exhibited low frequencies of < 0.1 across most global sheep breeds except Dorper, highlighting its potential for selective breeding applications. Leveraging lcWGS data, haplotype-based fine-mapping prioritized three candidate causal variants. A secondary QTL on chromosome 6 colocalized with the FecB mutation, a well-established locus associated with increased litter size. Intriguingly, individuals carrying one FecB allele showed a 6.18% reduction (0.22 kg) in birth weight, which tentatively indicates potential pleiotropic influences on both growth and reproductive traits. This study demonstrates the utility of lcWGS as a cost-effective, high-resolution tool for dissecting complex traits in livestock. Our findings not only advance the understanding of birth weight genetics in sheep but also offer a blueprint for accelerating genetic improvement programs in global livestock production through cost-effective, genome-wide approaches.
期刊介绍:
Journal of Animal Science and Biotechnology is an open access, peer-reviewed journal that encompasses all aspects of animal science and biotechnology. That includes domestic animal production, animal genetics and breeding, animal reproduction and physiology, animal nutrition and biochemistry, feed processing technology and bioevaluation, animal biotechnology, and meat science.