Emily R. Lowry, Tulsi Patel, Jonathon A. Costa, Elizabeth Chang, Shahroz Tariq, Hranush Melikyan, Ian Davis, Siaresh Aziz, Georgia Ntermentzaki, Francesco Lotti, Hynek Wichterle
{"title":"Embryonic motor neuron programming factors reactivate immature gene expression and suppress ALS pathologies in postnatal motor neurons","authors":"Emily R. Lowry, Tulsi Patel, Jonathon A. Costa, Elizabeth Chang, Shahroz Tariq, Hranush Melikyan, Ian Davis, Siaresh Aziz, Georgia Ntermentzaki, Francesco Lotti, Hynek Wichterle","doi":"10.1038/s41593-025-02033-x","DOIUrl":null,"url":null,"abstract":"Aging is a major risk factor in amyotrophic lateral sclerosis (ALS) and other adult-onset neurodegenerative disorders. Whereas young neurons are capable of buffering disease-causing stresses, mature neurons lose this ability and degenerate over time. We hypothesized that the resilience of young motor neurons could be restored by reexpression of the embryonic motor neuron selector transcription factors ISL1 and LHX3. We found that viral reexpression of ISL1 and LHX3 selectively in postnatal motor neurons reactivates aspects of their youthful gene expression program and alleviates key disease-relevant phenotypes in the SOD1G93A mouse model of ALS. Our results suggest that redeployment of lineage-specific neuronal selector transcription factors can be an effective strategy to attenuate age-dependent phenotypes in neurodegenerative disease. Lowry et al. use embryonic motor neuron selector transcription factors to partially rejuvenate the gene expression profile of mature neurons, making them more resistant to an ALS model without compromising their normal function.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"28 10","pages":"2044-2053"},"PeriodicalIF":20.0000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41593-025-02033-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Aging is a major risk factor in amyotrophic lateral sclerosis (ALS) and other adult-onset neurodegenerative disorders. Whereas young neurons are capable of buffering disease-causing stresses, mature neurons lose this ability and degenerate over time. We hypothesized that the resilience of young motor neurons could be restored by reexpression of the embryonic motor neuron selector transcription factors ISL1 and LHX3. We found that viral reexpression of ISL1 and LHX3 selectively in postnatal motor neurons reactivates aspects of their youthful gene expression program and alleviates key disease-relevant phenotypes in the SOD1G93A mouse model of ALS. Our results suggest that redeployment of lineage-specific neuronal selector transcription factors can be an effective strategy to attenuate age-dependent phenotypes in neurodegenerative disease. Lowry et al. use embryonic motor neuron selector transcription factors to partially rejuvenate the gene expression profile of mature neurons, making them more resistant to an ALS model without compromising their normal function.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.