Martin Metodiev, Marie Perrot-Dockès, Sarah Ouadah, Nicholas J Irons, Pierre Latouche, Adrian E Raftery
{"title":"Easily Computed Marginal Likelihoods from Posterior Simulation Using the THAMES Estimator.","authors":"Martin Metodiev, Marie Perrot-Dockès, Sarah Ouadah, Nicholas J Irons, Pierre Latouche, Adrian E Raftery","doi":"10.1214/24-ba1422","DOIUrl":null,"url":null,"abstract":"<p><p>We propose an easily computed estimator of marginal likelihoods from posterior simulation output, via reciprocal importance sampling, combining earlier proposals of DiCiccio et al (1997) and Robert and Wraith (2009). This involves only the unnormalized posterior densities from the sampled parameter values, and does not involve additional simulations beyond the main posterior simulation, or additional complicated calculations, provided that the parameter space is unconstrained. Even if this is not the case, the estimator is easily adjusted by a simple Monte Carlo approximation. It is unbiased for the reciprocal of the marginal likelihood, consistent, has finite variance, and is asymptotically normal. It involves one user-specified control parameter, and we derive an optimal way of specifying this. We illustrate it with several numerical examples.</p>","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12333553/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/24-ba1422","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose an easily computed estimator of marginal likelihoods from posterior simulation output, via reciprocal importance sampling, combining earlier proposals of DiCiccio et al (1997) and Robert and Wraith (2009). This involves only the unnormalized posterior densities from the sampled parameter values, and does not involve additional simulations beyond the main posterior simulation, or additional complicated calculations, provided that the parameter space is unconstrained. Even if this is not the case, the estimator is easily adjusted by a simple Monte Carlo approximation. It is unbiased for the reciprocal of the marginal likelihood, consistent, has finite variance, and is asymptotically normal. It involves one user-specified control parameter, and we derive an optimal way of specifying this. We illustrate it with several numerical examples.
期刊介绍:
Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining.
Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.