Easily Computed Marginal Likelihoods from Posterior Simulation Using the THAMES Estimator.

IF 2.5 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Martin Metodiev, Marie Perrot-Dockès, Sarah Ouadah, Nicholas J Irons, Pierre Latouche, Adrian E Raftery
{"title":"Easily Computed Marginal Likelihoods from Posterior Simulation Using the THAMES Estimator.","authors":"Martin Metodiev, Marie Perrot-Dockès, Sarah Ouadah, Nicholas J Irons, Pierre Latouche, Adrian E Raftery","doi":"10.1214/24-ba1422","DOIUrl":null,"url":null,"abstract":"<p><p>We propose an easily computed estimator of marginal likelihoods from posterior simulation output, via reciprocal importance sampling, combining earlier proposals of DiCiccio et al (1997) and Robert and Wraith (2009). This involves only the unnormalized posterior densities from the sampled parameter values, and does not involve additional simulations beyond the main posterior simulation, or additional complicated calculations, provided that the parameter space is unconstrained. Even if this is not the case, the estimator is easily adjusted by a simple Monte Carlo approximation. It is unbiased for the reciprocal of the marginal likelihood, consistent, has finite variance, and is asymptotically normal. It involves one user-specified control parameter, and we derive an optimal way of specifying this. We illustrate it with several numerical examples.</p>","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12333553/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/24-ba1422","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an easily computed estimator of marginal likelihoods from posterior simulation output, via reciprocal importance sampling, combining earlier proposals of DiCiccio et al (1997) and Robert and Wraith (2009). This involves only the unnormalized posterior densities from the sampled parameter values, and does not involve additional simulations beyond the main posterior simulation, or additional complicated calculations, provided that the parameter space is unconstrained. Even if this is not the case, the estimator is easily adjusted by a simple Monte Carlo approximation. It is unbiased for the reciprocal of the marginal likelihood, consistent, has finite variance, and is asymptotically normal. It involves one user-specified control parameter, and we derive an optimal way of specifying this. We illustrate it with several numerical examples.

利用泰晤士估计器从后验模拟中轻松计算边际似然。
我们结合DiCiccio等人(1997)和Robert和Wraith(2009)的早期建议,通过互反重要性抽样,从后验模拟输出中提出一个易于计算的边际似然估计。这只涉及采样参数值的非归一化后验密度,而不涉及主要后验模拟之外的额外模拟,或额外的复杂计算,前提是参数空间是无约束的。即使不是这样,估计量也很容易通过简单的蒙特卡罗近似来调整。它对于边际似然的倒数是无偏的,一致的,有有限的方差,并且是渐近正态的。它涉及一个用户指定的控制参数,并且我们推导了指定该参数的最佳方法。我们用几个数值例子来说明它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bayesian Analysis
Bayesian Analysis 数学-数学跨学科应用
CiteScore
6.50
自引率
13.60%
发文量
59
审稿时长
>12 weeks
期刊介绍: Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining. Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信