Brian M Sandroff, Robert W Motl, Glenn R Wylie, Grace E Wells, Carly L A Wender, Mary Ann Picone, Krupa Pandey, John DeLuca, Gary R Cutter
{"title":"Aerobic walking exercise training boosts thalamic connectivity in MS patients with cognitive processing speed impairment.","authors":"Brian M Sandroff, Robert W Motl, Glenn R Wylie, Grace E Wells, Carly L A Wender, Mary Ann Picone, Krupa Pandey, John DeLuca, Gary R Cutter","doi":"10.1016/j.bandc.2025.106349","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The current study involved a single-blind, randomized controlled trial on the effects of aerobic treadmill walking exercise training compared with an active control condition as an approach to modify thalamocortical resting-state functional connectivity (RSFC) as a neurobiological correlate of cognitive processing speed (CPS) impairment in 28 fully-ambulatory persons with multiple sclerosis (MS) who were pre-screened for impaired CPS.</p><p><strong>Methods: </strong>Participants completed baseline assessments of CPS and underwent resting-state fMRI to measure thalamocortical RSFC. Following baseline, participants were randomly assigned into either 12-weeks of supervised, aerobic treadmill walking exercise training or 12-weeks of stretching and range-of-motion activities (active control condition). After the 12-week study period, participants underwent follow-up assessments of CPS and thalamocortical RSFC using a treatment-blinded assessor.</p><p><strong>Results: </strong>Aerobic treadmill walking exercise training was associated with significantly increased RSFC between the thalamus and frontal/parietal regions relative to the active control condition. By comparison, the active control condition was associated with significantly increased RSFC between the thalamus and occipital regions relative to the treadmill condition.</p><p><strong>Conclusions: </strong>The current RCT provides critical information on underlying neurophysiological mechanisms of aerobic treadmill walking exercise training and stretching and range-of-motion activities among fully-ambulatory, but CPS impaired persons with MS. This is important for informing the design of aerobic exercise programs that selectively target thalamocortical RSFC as an approach to improve CPS in persons with MS. Such programs may be ripe for inclusion in a future mechanistic trial focusing on thalamocortical RSFC as a mediator of exercise effects on CPS in MS.</p>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"189 ","pages":"106349"},"PeriodicalIF":1.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381831/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Cognition","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.bandc.2025.106349","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The current study involved a single-blind, randomized controlled trial on the effects of aerobic treadmill walking exercise training compared with an active control condition as an approach to modify thalamocortical resting-state functional connectivity (RSFC) as a neurobiological correlate of cognitive processing speed (CPS) impairment in 28 fully-ambulatory persons with multiple sclerosis (MS) who were pre-screened for impaired CPS.
Methods: Participants completed baseline assessments of CPS and underwent resting-state fMRI to measure thalamocortical RSFC. Following baseline, participants were randomly assigned into either 12-weeks of supervised, aerobic treadmill walking exercise training or 12-weeks of stretching and range-of-motion activities (active control condition). After the 12-week study period, participants underwent follow-up assessments of CPS and thalamocortical RSFC using a treatment-blinded assessor.
Results: Aerobic treadmill walking exercise training was associated with significantly increased RSFC between the thalamus and frontal/parietal regions relative to the active control condition. By comparison, the active control condition was associated with significantly increased RSFC between the thalamus and occipital regions relative to the treadmill condition.
Conclusions: The current RCT provides critical information on underlying neurophysiological mechanisms of aerobic treadmill walking exercise training and stretching and range-of-motion activities among fully-ambulatory, but CPS impaired persons with MS. This is important for informing the design of aerobic exercise programs that selectively target thalamocortical RSFC as an approach to improve CPS in persons with MS. Such programs may be ripe for inclusion in a future mechanistic trial focusing on thalamocortical RSFC as a mediator of exercise effects on CPS in MS.
期刊介绍:
Brain and Cognition is a forum for the integration of the neurosciences and cognitive sciences. B&C publishes peer-reviewed research articles, theoretical papers, case histories that address important theoretical issues, and historical articles into the interaction between cognitive function and brain processes. The focus is on rigorous studies of an empirical or theoretical nature and which make an original contribution to our knowledge about the involvement of the nervous system in cognition. Coverage includes, but is not limited to memory, learning, emotion, perception, movement, music or praxis in relationship to brain structure or function. Published articles will typically address issues relating some aspect of cognitive function to its neurological substrates with clear theoretical import, formulating new hypotheses or refuting previously established hypotheses. Clinical papers are welcome if they raise issues of theoretical importance or concern and shed light on the interaction between brain function and cognitive function. We welcome review articles that clearly contribute a new perspective or integration, beyond summarizing the literature in the field; authors of review articles should make explicit where the contribution lies. We also welcome proposals for special issues on aspects of the relation between cognition and the structure and function of the nervous system. Such proposals can be made directly to the Editor-in-Chief from individuals interested in being guest editors for such collections.