Yifan Liu, Gege Liu, Xuanlin Wang, Xueru Zhang, Junlu Wu, Yaran Li, Yao Lu, Ce Shi, Feng Ye, Ruixin Sun
{"title":"The m<sup>1</sup>A-SFRP2-NFAT/TOX axis governs T cell exhaustion in gastric cancer.","authors":"Yifan Liu, Gege Liu, Xuanlin Wang, Xueru Zhang, Junlu Wu, Yaran Li, Yao Lu, Ce Shi, Feng Ye, Ruixin Sun","doi":"10.1007/s13402-025-01096-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>While immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy, their efficacy in gastric cancer (GC) remains limited, underscoring the need for mechanistic biomarkers of immune evasion.</p><p><strong>Methods: </strong>We analyzed m<sup>1</sup>A RNA modification patterns in the TCGA-STAD cohort, stratifying patients into three subtypes. Functional assays (including CRISPR-based SFRP2 modulation, NFAT/TOX reporter systems, and ex vivo T-cell exhaustion models) were employed to dissect the m1A-SFRP2-NFAT/TOX axis.</p><p><strong>Results: </strong>High-m<sup>1</sup>A tumors exhibited an immunosuppressive microenvironment dominated by exhausted TIM-3<sup>+</sup>PD-1<sup>+</sup> T cells and poor ICIs responses. Mechanistically, m<sup>1</sup>A-modified transcripts stabilized SFRP2, which activated NFAT1/2-TOX signaling to drive T-cell dysfunction-independent of PD-L1 or TMB. SFRP2 overexpression induced irreversible T-cell exhaustion, while its blockade restored antitumor immunity in preclinical models.</p><p><strong>Conclusion: </strong>Our study unveils m<sup>1</sup>A-dependent epitranscriptomic control of SFRP2 as a novel regulator of the NFAT/TOX-mediated immune evasion axis in GC. The m<sup>1</sup>A scoring system may refine patient stratification, and targeting SFRP2 represents a promising strategy to overcome ICI resistance.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-025-01096-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: While immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy, their efficacy in gastric cancer (GC) remains limited, underscoring the need for mechanistic biomarkers of immune evasion.
Methods: We analyzed m1A RNA modification patterns in the TCGA-STAD cohort, stratifying patients into three subtypes. Functional assays (including CRISPR-based SFRP2 modulation, NFAT/TOX reporter systems, and ex vivo T-cell exhaustion models) were employed to dissect the m1A-SFRP2-NFAT/TOX axis.
Results: High-m1A tumors exhibited an immunosuppressive microenvironment dominated by exhausted TIM-3+PD-1+ T cells and poor ICIs responses. Mechanistically, m1A-modified transcripts stabilized SFRP2, which activated NFAT1/2-TOX signaling to drive T-cell dysfunction-independent of PD-L1 or TMB. SFRP2 overexpression induced irreversible T-cell exhaustion, while its blockade restored antitumor immunity in preclinical models.
Conclusion: Our study unveils m1A-dependent epitranscriptomic control of SFRP2 as a novel regulator of the NFAT/TOX-mediated immune evasion axis in GC. The m1A scoring system may refine patient stratification, and targeting SFRP2 represents a promising strategy to overcome ICI resistance.
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.