Ruoshi Li, Mengmeng Wu, Shunlu Chen, Lan Huang, Can Wang, Zhiyin Yu, Feng Huang, Xiaofen Liu, Nianyin Zhu, Chi Song, Guihua Jiang, Xianmei Yin
{"title":"A cell isolation method from Ligusticum chuanxiong Hort. suitable for obtaining high-quality RNA for Smart-seq.","authors":"Ruoshi Li, Mengmeng Wu, Shunlu Chen, Lan Huang, Can Wang, Zhiyin Yu, Feng Huang, Xiaofen Liu, Nianyin Zhu, Chi Song, Guihua Jiang, Xianmei Yin","doi":"10.1186/s13007-025-01425-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To overcome the risk of cellular damage and RNA degradation caused by high temperatures and cellular damage induced by laser capture microdissection (LCM) during plant single cell or small cell cluster isolation, we developed a rapid and simple method for single-cell separation and trace RNA extraction. The extracted RNA can be used for Smart-seq analysis, enabling comprehensive studies of various cell types.</p><p><strong>Method: </strong>We used the secretory cells of Ligusticum chuanxiong Hort. fibrous root. First, we performed paraffin embedding to maintain RNA stability, and then examined the optimal slice thickness to obtain intact secretory cells. We compared the RNA quality of secretory cells isolated by LCM versus manual dissection under a microscope with a scalpel. Finally, xylene was introduced into the lysis buffer, followed by rapid shaking to achieve simultaneous dewaxing and cell lysis, and the xylene layer was then removed by centrifugation.</p><p><strong>Result: </strong>A slice thickness of <math><mrow><mn>20</mn> <mspace></mspace> <mi>μ</mi> <mtext>m</mtext></mrow> </math> best preserved the integrity of secretory cells. Compared with LCM, this method yielded higher quality RNA. The obtained transcriptomic data showed an average Q30 score exceeding 91% and a genome mapping rate surpassing 86%.</p><p><strong>Conclusion: </strong>This method can yield high-quality trace RNA suitable for Smart-seq analysis. Moreover, the significant differences in the transcriptomes of various small cell clusters types demonstrate the effectiveness and specificity of our manual dissection method.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"109"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337525/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01425-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To overcome the risk of cellular damage and RNA degradation caused by high temperatures and cellular damage induced by laser capture microdissection (LCM) during plant single cell or small cell cluster isolation, we developed a rapid and simple method for single-cell separation and trace RNA extraction. The extracted RNA can be used for Smart-seq analysis, enabling comprehensive studies of various cell types.
Method: We used the secretory cells of Ligusticum chuanxiong Hort. fibrous root. First, we performed paraffin embedding to maintain RNA stability, and then examined the optimal slice thickness to obtain intact secretory cells. We compared the RNA quality of secretory cells isolated by LCM versus manual dissection under a microscope with a scalpel. Finally, xylene was introduced into the lysis buffer, followed by rapid shaking to achieve simultaneous dewaxing and cell lysis, and the xylene layer was then removed by centrifugation.
Result: A slice thickness of best preserved the integrity of secretory cells. Compared with LCM, this method yielded higher quality RNA. The obtained transcriptomic data showed an average Q30 score exceeding 91% and a genome mapping rate surpassing 86%.
Conclusion: This method can yield high-quality trace RNA suitable for Smart-seq analysis. Moreover, the significant differences in the transcriptomes of various small cell clusters types demonstrate the effectiveness and specificity of our manual dissection method.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.