How fungi see the world: fungal photoreceptors and their role in the regulation of fungal biology.

IF 7.8 1区 生物学 Q1 MICROBIOLOGY
Microbiology and Molecular Biology Reviews Pub Date : 2025-09-25 Epub Date: 2025-08-11 DOI:10.1128/mmbr.00149-22
Luis M Corrochano, Gabriel Gutiérrez, María Corrochano-Luque, Antonio Franco-Cano, David Cánovas
{"title":"How fungi see the world: fungal photoreceptors and their role in the regulation of fungal biology.","authors":"Luis M Corrochano, Gabriel Gutiérrez, María Corrochano-Luque, Antonio Franco-Cano, David Cánovas","doi":"10.1128/mmbr.00149-22","DOIUrl":null,"url":null,"abstract":"<p><p>SUMMARYFungi use light as a signal for the regulation of development, to guide the growth of reproductive structures, and to protect the fungal cell from DNA damage produced by light and UV radiation. Light perception requires the activity of photoreceptors that relay the light signal through transduction pathways into the cellular response. Fungi can see and react to a wide range of colors, but most fungi use blue light as their primary signal to regulate its photobiology. Examples of fungal perception of UV, green, and red light, like plants, have been documented and, in most cases, the photoreceptors responsible for these responses have been identified. Blue light is perceived through the activity of light-regulated transcription factors, the WC proteins, first identified in <i>Neurospora crassa</i>. Red light is perceived by phytochromes, a photoreceptor characterized in detail in <i>Aspergillus nidulans</i>. A novel type of rhodopsin, rhodopsin guanylyl cyclase (RGS) has been identified in the zoosporic fungus <i>Blastocladiella emersonii</i>. These types of photoreceptors, together with the blue-light photoreceptor cryptochrome, are widespread in fungi, suggesting that the ancestor of the fungi could see a wide range of colors. Gene duplication and specialization have allowed specific use of fungal photoreceptors in the regulation of fungal biology.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0014922"},"PeriodicalIF":7.8000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462293/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Molecular Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mmbr.00149-22","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

SUMMARYFungi use light as a signal for the regulation of development, to guide the growth of reproductive structures, and to protect the fungal cell from DNA damage produced by light and UV radiation. Light perception requires the activity of photoreceptors that relay the light signal through transduction pathways into the cellular response. Fungi can see and react to a wide range of colors, but most fungi use blue light as their primary signal to regulate its photobiology. Examples of fungal perception of UV, green, and red light, like plants, have been documented and, in most cases, the photoreceptors responsible for these responses have been identified. Blue light is perceived through the activity of light-regulated transcription factors, the WC proteins, first identified in Neurospora crassa. Red light is perceived by phytochromes, a photoreceptor characterized in detail in Aspergillus nidulans. A novel type of rhodopsin, rhodopsin guanylyl cyclase (RGS) has been identified in the zoosporic fungus Blastocladiella emersonii. These types of photoreceptors, together with the blue-light photoreceptor cryptochrome, are widespread in fungi, suggesting that the ancestor of the fungi could see a wide range of colors. Gene duplication and specialization have allowed specific use of fungal photoreceptors in the regulation of fungal biology.

真菌如何看世界:真菌光感受器及其在真菌生物学调节中的作用。
真菌利用光作为调节发育的信号,指导生殖结构的生长,并保护真菌细胞免受光和紫外线辐射造成的DNA损伤。光感知需要光感受器的活动,光感受器通过转导途径将光信号传递到细胞反应中。真菌可以看到并对各种颜色做出反应,但大多数真菌使用蓝光作为调节其光生物学的主要信号。真菌感知紫外线、绿光和红光的例子,如植物,已经被记录下来,在大多数情况下,负责这些反应的光感受器已经被确定。蓝光是通过光调节转录因子WC蛋白的活性感知的,WC蛋白最初是在粗神经孢子虫中发现的。红色光被光敏色素感知,光敏色素是一种光感受器,在芽曲霉中有详细的特征。一种新的视紫红质——视紫红质观酰基环化酶(RGS)在动物孢子真菌埃默氏芽孢杆菌中被发现。这些类型的光感受器,连同蓝光光感受器隐色素,在真菌中广泛存在,这表明真菌的祖先可以看到各种各样的颜色。基因复制和专门化使得真菌光感受器在真菌生物学调控中的特异性使用成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.80
自引率
0.80%
发文量
27
期刊介绍: Microbiology and Molecular Biology Reviews (MMBR), a journal that explores the significance and interrelationships of recent discoveries in various microbiology fields, publishes review articles that help both specialists and nonspecialists understand and apply the latest findings in their own research. MMBR covers a wide range of topics in microbiology, including microbial ecology, evolution, parasitology, biotechnology, and immunology. The journal caters to scientists with diverse interests in all areas of microbial science and encompasses viruses, bacteria, archaea, fungi, unicellular eukaryotes, and microbial parasites. MMBR primarily publishes authoritative and critical reviews that push the boundaries of knowledge, appealing to both specialists and generalists. The journal often includes descriptive figures and tables to enhance understanding. Indexed/Abstracted in various databases such as Agricola, BIOSIS Previews, CAB Abstracts, Cambridge Scientific Abstracts, Chemical Abstracts Service, Current Contents- Life Sciences, EMBASE, Food Science and Technology Abstracts, Illustrata, MEDLINE, Science Citation Index Expanded (Web of Science), Summon, and Scopus, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信