Jae-Youn Keum, Jeong Hee Yoon, Michael Garwood, Jang-Yeon Park
{"title":"Flow-suppressed 2D spin-echo imaging with high tolerance to B<sub>1</sub> inhomogeneity using hyperbolic secant pulses.","authors":"Jae-Youn Keum, Jeong Hee Yoon, Michael Garwood, Jang-Yeon Park","doi":"10.1002/mrm.70032","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To demonstrate flow-suppressed two-dimensional (2D) spin-echo and spin-echo diffusion echo-planar imaging (EPI) sequences using hyperbolic secant (HS) pulses for both π/2 excitation and π refocusing.</p><p><strong>Theory and methods: </strong>A theoretical framework to derive phase dispersion of moving spins under π/2 excitation and π refocusing using HS pulses was described. Numerical simulations were performed to verify the validity of the theoretical analysis. All experiments were performed on a 3T clinical scanner. Phantom and human-brain imaging was performed using 2D spin-echo sequence, and liver imaging was performed using 2D spin-echo diffusion EPI. The signal-to-noise ratio and residual blood flow signal of the proposed sequences were compared with those of conventional spin-echo sequences using sinc pulses.</p><p><strong>Results: </strong>Results from human brain and liver images demonstrated that the proposed method substantially reduced blood flow artifacts. In the brain, venous blood flow was suppressed more effectively with the proposed method than with conventional spin-echo sequence using presaturation. In the liver, as compared with spin-echo sequence using sinc pulses, the proposed method showed noticeable attenuation of bright blood signals at low b-values, whereas the overall tissue signal in peripheral regions was higher. The signal-to-noise ratio was enhanced by 10% to 30%, indicating improved B<sub>1</sub> tolerance due to the adiabatic π refocusing HS pulse.</p><p><strong>Conclusion: </strong>Flow suppression and partial B<sub>1</sub> insensitivity were achieved by replacing sinc pulses with HS pulses in conventional 2D spin-echo imaging and spin-echo diffusion EPI sequences. This approach may be particularly useful in various applications requiring reduced vascular signal contamination, such as liver and brain imaging.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.70032","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To demonstrate flow-suppressed two-dimensional (2D) spin-echo and spin-echo diffusion echo-planar imaging (EPI) sequences using hyperbolic secant (HS) pulses for both π/2 excitation and π refocusing.
Theory and methods: A theoretical framework to derive phase dispersion of moving spins under π/2 excitation and π refocusing using HS pulses was described. Numerical simulations were performed to verify the validity of the theoretical analysis. All experiments were performed on a 3T clinical scanner. Phantom and human-brain imaging was performed using 2D spin-echo sequence, and liver imaging was performed using 2D spin-echo diffusion EPI. The signal-to-noise ratio and residual blood flow signal of the proposed sequences were compared with those of conventional spin-echo sequences using sinc pulses.
Results: Results from human brain and liver images demonstrated that the proposed method substantially reduced blood flow artifacts. In the brain, venous blood flow was suppressed more effectively with the proposed method than with conventional spin-echo sequence using presaturation. In the liver, as compared with spin-echo sequence using sinc pulses, the proposed method showed noticeable attenuation of bright blood signals at low b-values, whereas the overall tissue signal in peripheral regions was higher. The signal-to-noise ratio was enhanced by 10% to 30%, indicating improved B1 tolerance due to the adiabatic π refocusing HS pulse.
Conclusion: Flow suppression and partial B1 insensitivity were achieved by replacing sinc pulses with HS pulses in conventional 2D spin-echo imaging and spin-echo diffusion EPI sequences. This approach may be particularly useful in various applications requiring reduced vascular signal contamination, such as liver and brain imaging.
期刊介绍:
Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.