{"title":"Biofilm formation and eradication of <i>Staphylococcus aureus</i>: a study of culture conditions and endolysin ZAM-CS effect.","authors":"Yasaman Ahmadbeigi, Neda Soleimani, Farzaneh Azizmohseni, Zahra Amini-Bayat","doi":"10.18502/ijm.v17i4.19247","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong><i>Staphylococcus aureus</i> significantly contributes to healthcare-associated infections, with biofilm formation causing chronic, antibiotic-resistant cases. Because biofilms show high resistance to conventional antibiotics, endolysins have emerged as a promising alternative for treating antibiotic-resistant, biofilm-associated infections. This study evaluated the effects of four culture media and different incubation times on biofilm formation in methicillin-sensitive (MSSA) and methicillin-resistant (MRSA) <i>S. aureus</i> strains and assessed the anti-biofilm efficacy of a novel chimeric endolysin called ZAM-CS (catalytic domain of SAL-1 endolysin and binding domain of lysostaphin).</p><p><strong>Materials and methods: </strong>Biofilms were grown for 24, 48, and 72 hours in Mueller-Hinton broth (MHB), Luria broth (LB), terrific broth (TB), and tryptic soy broth (TSB). The crystal violet assay was used to assess the biomass of the biofilm. The optimal biofilm conditions were then used to test ZAM-CS's activity at different concentrations.</p><p><strong>Results: </strong>MSSA formed the strongest biofilms in TB. MRSA formed stable, high-biomass biofilms in TSB, TB, and LB, while MHB was the least supportive medium for both strains. ZAM-CS significantly reduced biofilm biomass in both MSSA and MRSA (up to 77%).</p><p><strong>Conclusion: </strong>ZAM-CS's rapid and potent anti-biofilm activity at low concentrations highlights its potential as a promising treatment against antibiotic-resistant <i>S. aureus</i> biofilm infections.</p>","PeriodicalId":14633,"journal":{"name":"Iranian Journal of Microbiology","volume":"17 4","pages":"586-592"},"PeriodicalIF":1.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12331455/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/ijm.v17i4.19247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objectives: Staphylococcus aureus significantly contributes to healthcare-associated infections, with biofilm formation causing chronic, antibiotic-resistant cases. Because biofilms show high resistance to conventional antibiotics, endolysins have emerged as a promising alternative for treating antibiotic-resistant, biofilm-associated infections. This study evaluated the effects of four culture media and different incubation times on biofilm formation in methicillin-sensitive (MSSA) and methicillin-resistant (MRSA) S. aureus strains and assessed the anti-biofilm efficacy of a novel chimeric endolysin called ZAM-CS (catalytic domain of SAL-1 endolysin and binding domain of lysostaphin).
Materials and methods: Biofilms were grown for 24, 48, and 72 hours in Mueller-Hinton broth (MHB), Luria broth (LB), terrific broth (TB), and tryptic soy broth (TSB). The crystal violet assay was used to assess the biomass of the biofilm. The optimal biofilm conditions were then used to test ZAM-CS's activity at different concentrations.
Results: MSSA formed the strongest biofilms in TB. MRSA formed stable, high-biomass biofilms in TSB, TB, and LB, while MHB was the least supportive medium for both strains. ZAM-CS significantly reduced biofilm biomass in both MSSA and MRSA (up to 77%).
Conclusion: ZAM-CS's rapid and potent anti-biofilm activity at low concentrations highlights its potential as a promising treatment against antibiotic-resistant S. aureus biofilm infections.
期刊介绍:
The Iranian Journal of Microbiology (IJM) is an international, multi-disciplinary, peer-reviewed journal that provides rapid publication of the most advanced scientific research in the areas of basic and applied research on bacteria and other micro-organisms, including bacteria, viruses, yeasts, fungi, microalgae, and protozoa concerning the development of tools for diagnosis and disease control, epidemiology, antimicrobial agents, clinical microbiology, immunology, Genetics, Genomics and Molecular Biology. Contributions may be in the form of original research papers, review articles, short communications, case reports, technical reports, and letters to the Editor. Research findings must be novel and the original data must be available for review by the Editors, if necessary. Studies that are preliminary, of weak originality or merely descriptive as well as negative results are not appropriate for the journal. Papers considered for publication must be unpublished work (except in an abstract form) that is not under consideration for publication anywhere else, and all co-authors should have agreed to the submission. Manuscripts should be written in English.