Zainab S Hadawi, Isam Ngaimesh Taeb, Rasha N Aljabery
{"title":"Morphine electrochemical determination using SnO<sub>2</sub> nanostructure-modified glassy carbon electrode in the presence of diclofenac.","authors":"Zainab S Hadawi, Isam Ngaimesh Taeb, Rasha N Aljabery","doi":"10.5599/admet.2803","DOIUrl":null,"url":null,"abstract":"<p><p>In the present work, SnO<sub>2</sub> nanostructures were synthesized and a sensitive voltammetric sensor on a glassy carbon electrode (GCE) was constructed to estimate morphine (MP) in the presence of diclofenac (DLF).</p><p><strong>Background and purpose: </strong>Because diclofenac (DLF) is an NSAID, its administration can reduce postoperative morphine (MP) requirements in adults; for example, standard DLF dosing has been shown to decrease MP use after abdominal surgery. Hence, devising a simple, cost-effective, and swift assay for these compounds in biological and pharmaceutical specimens is indispensable.</p><p><strong>Experimental approach: </strong>SnO<sub>2</sub> nanostructures were synthesized, and a sensitive voltammetric sensor on a glassy carbon electrode (GCE) was constructed to estimate MP in the presence of DLF. Cyclic voltammetry was employed to evaluate the electrochemical response of the SnO2 nanostructures/GCE towards MP.</p><p><strong>Key results: </strong>The SnO<sub>2</sub> nanostructures exhibited a significant effect on the electrochemical reaction of the electrode toward the MP oxidation. The SnO<sub>2</sub> nanostructures/GCE further exhibited a more sensitive detection platform for MP determination with a limit of detection of 0.006 μM using differential pulse voltammetry in a linear range of 0.01 to 340.0 μM.</p><p><strong>Conclusion: </strong>The SnO<sub>2</sub> nanostructures/GCE exhibited extremely high electrochemical activities towards the simultaneous oxidation of MP and DLF. Moreover, the SnO<sub>2</sub> nanostructures/GCE provided reproducible and stable responses for MP quantitation. The platform prepared showed successful performance for MP and DLF determination in real samples. SnO<sub>2</sub> nanostructures exhibited a significant effect on the electrochemical reaction of the electrode toward the MP oxidation. The SnO<sub>2</sub> nanostructures/GCE further exhibited a more sensitive detection platform for MP determination with a limit of detection of 0.006 μM using differential pulse voltammetry in a linear range of 0.01 to 340.0 μM. Additionally, the SnO<sub>2</sub> nanostructures/GCE exhibited extremely high electrochemical activities towards the simultaneous oxidation of MP and DLF. Moreover, the SnO<sub>2</sub> nanostructures/GCE provided reproducible and stable responses for MP quantitation. The platform prepared showed successful performance for MP and DLF determination in real samples.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"13 4","pages":"2803"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335302/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADMET and DMPK","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/admet.2803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the present work, SnO2 nanostructures were synthesized and a sensitive voltammetric sensor on a glassy carbon electrode (GCE) was constructed to estimate morphine (MP) in the presence of diclofenac (DLF).
Background and purpose: Because diclofenac (DLF) is an NSAID, its administration can reduce postoperative morphine (MP) requirements in adults; for example, standard DLF dosing has been shown to decrease MP use after abdominal surgery. Hence, devising a simple, cost-effective, and swift assay for these compounds in biological and pharmaceutical specimens is indispensable.
Experimental approach: SnO2 nanostructures were synthesized, and a sensitive voltammetric sensor on a glassy carbon electrode (GCE) was constructed to estimate MP in the presence of DLF. Cyclic voltammetry was employed to evaluate the electrochemical response of the SnO2 nanostructures/GCE towards MP.
Key results: The SnO2 nanostructures exhibited a significant effect on the electrochemical reaction of the electrode toward the MP oxidation. The SnO2 nanostructures/GCE further exhibited a more sensitive detection platform for MP determination with a limit of detection of 0.006 μM using differential pulse voltammetry in a linear range of 0.01 to 340.0 μM.
Conclusion: The SnO2 nanostructures/GCE exhibited extremely high electrochemical activities towards the simultaneous oxidation of MP and DLF. Moreover, the SnO2 nanostructures/GCE provided reproducible and stable responses for MP quantitation. The platform prepared showed successful performance for MP and DLF determination in real samples. SnO2 nanostructures exhibited a significant effect on the electrochemical reaction of the electrode toward the MP oxidation. The SnO2 nanostructures/GCE further exhibited a more sensitive detection platform for MP determination with a limit of detection of 0.006 μM using differential pulse voltammetry in a linear range of 0.01 to 340.0 μM. Additionally, the SnO2 nanostructures/GCE exhibited extremely high electrochemical activities towards the simultaneous oxidation of MP and DLF. Moreover, the SnO2 nanostructures/GCE provided reproducible and stable responses for MP quantitation. The platform prepared showed successful performance for MP and DLF determination in real samples.
期刊介绍:
ADMET and DMPK is an open access journal devoted to the rapid dissemination of new and original scientific results in all areas of absorption, distribution, metabolism, excretion, toxicology and pharmacokinetics of drugs. ADMET and DMPK publishes the following types of contributions: - Original research papers - Feature articles - Review articles - Short communications and Notes - Letters to Editors - Book reviews The scope of the Journal involves, but is not limited to, the following areas: - physico-chemical properties of drugs and methods of their determination - drug permeabilities - drug absorption - drug-drug, drug-protein, drug-membrane and drug-DNA interactions - chemical stability and degradations of drugs - instrumental methods in ADMET - drug metablic processes - routes of administration and excretion of drug - pharmacokinetic/pharmacodynamic study - quantitative structure activity/property relationship - ADME/PK modelling - Toxicology screening - Transporter identification and study