{"title":"Exploring hepatic stellate cell-driven fibrosis: therapeutic advances and future perspectives.","authors":"Alka Singh, Ansab Akhtar, Prashant Shukla","doi":"10.5599/admet.2874","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Liver fibrosis, a progressive liver disease arising from viral or metabolic causes, poses a major global health challenge due to its potential progression to cirrhosis and hepatocellular carcinoma. Due to the complex aetiology and epidemiology of liver fibrosis, most therapies fail in the clinic, and very few drugs have been approved by the US FDA.</p><p><strong>Approach: </strong>This review highlights the pathophysiological features of liver fibrosis, with a focus on novel targets in hepatic stellate cells (HSCs), key players in the fibrogenesis process, to develop successful therapeutic approaches using both pharmacological agents and active targeting strategies. The review also examines current therapeutic strategies targeting liver fibrosis, both in preclinical lab setups and clinical trials. Furthermore, various receptors involved in HSC-mediated liver fibrosis and active drug delivery targeting strategies are reviewed to enhance therapeutic outcomes. This article also integrates existing knowledge to identify research gaps and guide future investigations and clinical translation in liver fibrosis treatment. In addition, novel pathways pertaining to liver fibrosis, such as the RSPO3-LGR4/5-β-catenin cascade, the CD47/YAP/TEAD4 signalling axis, and HAb18G/CD147, are briefly elaborated in the context of therapeutic approaches for arresting HSC activation. Single-cell RNA sequencing of HSCs is presented to provide a clearer picture of liver fibrosis.</p><p><strong>Conclusion: </strong>The review highlights critical research gaps in liver fibrosis therapy and promising active targeting strategies and pharmacological interventions to improve therapeutic outcomes. Overall, this review provides a robust foundation for scientists and clinicians to advance active targeting of the disease pathology and to develop new pharmaceutical formulations that are pharmacologically safer and more efficacious.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"13 4","pages":"2874"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335298/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADMET and DMPK","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/admet.2874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: Liver fibrosis, a progressive liver disease arising from viral or metabolic causes, poses a major global health challenge due to its potential progression to cirrhosis and hepatocellular carcinoma. Due to the complex aetiology and epidemiology of liver fibrosis, most therapies fail in the clinic, and very few drugs have been approved by the US FDA.
Approach: This review highlights the pathophysiological features of liver fibrosis, with a focus on novel targets in hepatic stellate cells (HSCs), key players in the fibrogenesis process, to develop successful therapeutic approaches using both pharmacological agents and active targeting strategies. The review also examines current therapeutic strategies targeting liver fibrosis, both in preclinical lab setups and clinical trials. Furthermore, various receptors involved in HSC-mediated liver fibrosis and active drug delivery targeting strategies are reviewed to enhance therapeutic outcomes. This article also integrates existing knowledge to identify research gaps and guide future investigations and clinical translation in liver fibrosis treatment. In addition, novel pathways pertaining to liver fibrosis, such as the RSPO3-LGR4/5-β-catenin cascade, the CD47/YAP/TEAD4 signalling axis, and HAb18G/CD147, are briefly elaborated in the context of therapeutic approaches for arresting HSC activation. Single-cell RNA sequencing of HSCs is presented to provide a clearer picture of liver fibrosis.
Conclusion: The review highlights critical research gaps in liver fibrosis therapy and promising active targeting strategies and pharmacological interventions to improve therapeutic outcomes. Overall, this review provides a robust foundation for scientists and clinicians to advance active targeting of the disease pathology and to develop new pharmaceutical formulations that are pharmacologically safer and more efficacious.
期刊介绍:
ADMET and DMPK is an open access journal devoted to the rapid dissemination of new and original scientific results in all areas of absorption, distribution, metabolism, excretion, toxicology and pharmacokinetics of drugs. ADMET and DMPK publishes the following types of contributions: - Original research papers - Feature articles - Review articles - Short communications and Notes - Letters to Editors - Book reviews The scope of the Journal involves, but is not limited to, the following areas: - physico-chemical properties of drugs and methods of their determination - drug permeabilities - drug absorption - drug-drug, drug-protein, drug-membrane and drug-DNA interactions - chemical stability and degradations of drugs - instrumental methods in ADMET - drug metablic processes - routes of administration and excretion of drug - pharmacokinetic/pharmacodynamic study - quantitative structure activity/property relationship - ADME/PK modelling - Toxicology screening - Transporter identification and study