Derivative of the Riemann–Hilbert map

IF 0.9 3区 数学 Q2 MATHEMATICS
Vladimir Marković, Ognjen Tošić
{"title":"Derivative of the Riemann–Hilbert map","authors":"Vladimir Marković,&nbsp;Ognjen Tošić","doi":"10.1112/blms.70092","DOIUrl":null,"url":null,"abstract":"<p>Given a pair <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mo>∇</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$(X,\\nabla)$</annotation>\n </semantics></math>, consisting of a closed Riemann surface <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> and a holomorphic connection <span></span><math>\n <semantics>\n <mo>∇</mo>\n <annotation>$\\nabla$</annotation>\n </semantics></math> on the trivial principal bundle <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>×</mo>\n <msub>\n <mi>SL</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$X\\times \\mathrm{SL}_2(\\mathbb {C})\\rightarrow X$</annotation>\n </semantics></math>, the Riemann–Hilbert map sends <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mo>∇</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$(X,\\nabla)$</annotation>\n </semantics></math> to its monodromy representation. We compute the derivative of this map, and provide a simple description of the locus where it is injective, recovering in the process several previously obtained results.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2253-2264"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70092","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a pair ( X , ) $(X,\nabla)$ , consisting of a closed Riemann surface X $X$ and a holomorphic connection $\nabla$ on the trivial principal bundle X × SL 2 ( C ) X $X\times \mathrm{SL}_2(\mathbb {C})\rightarrow X$ , the Riemann–Hilbert map sends ( X , ) $(X,\nabla)$ to its monodromy representation. We compute the derivative of this map, and provide a simple description of the locus where it is injective, recovering in the process several previously obtained results.

Abstract Image

Abstract Image

Abstract Image

黎曼-希尔伯特映射的导数
给定一对(X,∇)$(X,\nabla)$,由一个封闭黎曼曲面X $X$和一个平凡主束X × SL 2 (C)上的全纯连接∇$\nabla$组成→X $X\times \mathrm{SL}_2(\mathbb {C})\rightarrow X$, Riemann-Hilbert映射将(X,∇)$(X,\nabla)$发送到它的单态表示。我们计算了这个映射的导数,并提供了它被注入的轨迹的简单描述,在这个过程中恢复了几个先前得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信