Vivian Nketia-Yawson, Hae Jeong Kim, Ji Hyeon Lee, Hyungju Ahn, Benjamin Nketia-Yawson, Jongmin Choi, Jea Woong Jo
{"title":"Backbone Fluorination of Benzodithiophene-Based Hole-Transporting Polymers for Enhanced Organic Transistors and Nanocrystal Photovoltaics","authors":"Vivian Nketia-Yawson, Hae Jeong Kim, Ji Hyeon Lee, Hyungju Ahn, Benjamin Nketia-Yawson, Jongmin Choi, Jea Woong Jo","doi":"10.1007/s12221-025-01039-3","DOIUrl":null,"url":null,"abstract":"<div><p>Chemical substitution is a propitious strategy for optimizing the charge transport properties of π-conjugated donor–acceptor (D–A) semiconducting materials in organic electronic devices. To explore the effects of fluorine substitution on the electronic and structural properties of organic field-effect transistors (OFETs) and photovoltaics (PVs), two new benzo[1,2-b:4,5-b′]dithiophene (BDT)-based hole transport polymers (HTPs) were synthesized and characterized. The BDT monomers consisting of 2,6-bis(trimethytin)-4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene monomer (BDT monomer), and (4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane) (FBDT monomer) were combined with 2,5-dibromofuran to produce BDT-Fu and FBDT-Fu HTPs. Fluorine integration significantly improved the molecular structure, optical, electrochemical, and morphological properties of these polymers, and the optoelectronic properties of the resulting devices. In FBDT-Fu, the fluorination enhanced crystallinity, optical absorption, and morphology, leading improvement in hole mobility of 3.49 × 10<sup>–3</sup> cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> in optimized poly(methyl methacrylate) (PMMA)-gated OFETs, with an on/off current ratio exceeding 10<sup>3</sup>. Consequently, FBDT-Fu-based silver bismuth sulfide (AgBiS<sub>2</sub>) nanocrystal PVs achieved a power conversion efficiency of 5.5%, a high fill factor of 55.46%, and an open-circuit voltage of 0.504 V under 1-sun illumination. This molecular design strategy offers an effective approach for optimizing the electrical properties of organic conjugated semiconductors for next-generation optoelectronic devices.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 9","pages":"3721 - 3728"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-025-01039-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical substitution is a propitious strategy for optimizing the charge transport properties of π-conjugated donor–acceptor (D–A) semiconducting materials in organic electronic devices. To explore the effects of fluorine substitution on the electronic and structural properties of organic field-effect transistors (OFETs) and photovoltaics (PVs), two new benzo[1,2-b:4,5-b′]dithiophene (BDT)-based hole transport polymers (HTPs) were synthesized and characterized. The BDT monomers consisting of 2,6-bis(trimethytin)-4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene monomer (BDT monomer), and (4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane) (FBDT monomer) were combined with 2,5-dibromofuran to produce BDT-Fu and FBDT-Fu HTPs. Fluorine integration significantly improved the molecular structure, optical, electrochemical, and morphological properties of these polymers, and the optoelectronic properties of the resulting devices. In FBDT-Fu, the fluorination enhanced crystallinity, optical absorption, and morphology, leading improvement in hole mobility of 3.49 × 10–3 cm2 V–1 s–1 in optimized poly(methyl methacrylate) (PMMA)-gated OFETs, with an on/off current ratio exceeding 103. Consequently, FBDT-Fu-based silver bismuth sulfide (AgBiS2) nanocrystal PVs achieved a power conversion efficiency of 5.5%, a high fill factor of 55.46%, and an open-circuit voltage of 0.504 V under 1-sun illumination. This molecular design strategy offers an effective approach for optimizing the electrical properties of organic conjugated semiconductors for next-generation optoelectronic devices.
期刊介绍:
-Chemistry of Fiber Materials, Polymer Reactions and Synthesis-
Physical Properties of Fibers, Polymer Blends and Composites-
Fiber Spinning and Textile Processing, Polymer Physics, Morphology-
Colorants and Dyeing, Polymer Analysis and Characterization-
Chemical Aftertreatment of Textiles, Polymer Processing and Rheology-
Textile and Apparel Science, Functional Polymers