Backbone Fluorination of Benzodithiophene-Based Hole-Transporting Polymers for Enhanced Organic Transistors and Nanocrystal Photovoltaics

IF 2.3 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES
Vivian Nketia-Yawson, Hae Jeong Kim, Ji Hyeon Lee, Hyungju Ahn, Benjamin Nketia-Yawson, Jongmin Choi, Jea Woong Jo
{"title":"Backbone Fluorination of Benzodithiophene-Based Hole-Transporting Polymers for Enhanced Organic Transistors and Nanocrystal Photovoltaics","authors":"Vivian Nketia-Yawson,&nbsp;Hae Jeong Kim,&nbsp;Ji Hyeon Lee,&nbsp;Hyungju Ahn,&nbsp;Benjamin Nketia-Yawson,&nbsp;Jongmin Choi,&nbsp;Jea Woong Jo","doi":"10.1007/s12221-025-01039-3","DOIUrl":null,"url":null,"abstract":"<div><p>Chemical substitution is a propitious strategy for optimizing the charge transport properties of π-conjugated donor–acceptor (D–A) semiconducting materials in organic electronic devices. To explore the effects of fluorine substitution on the electronic and structural properties of organic field-effect transistors (OFETs) and photovoltaics (PVs), two new benzo[1,2-b:4,5-b′]dithiophene (BDT)-based hole transport polymers (HTPs) were synthesized and characterized. The BDT monomers consisting of 2,6-bis(trimethytin)-4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene monomer (BDT monomer), and (4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane) (FBDT monomer) were combined with 2,5-dibromofuran to produce BDT-Fu and FBDT-Fu HTPs. Fluorine integration significantly improved the molecular structure, optical, electrochemical, and morphological properties of these polymers, and the optoelectronic properties of the resulting devices. In FBDT-Fu, the fluorination enhanced crystallinity, optical absorption, and morphology, leading improvement in hole mobility of 3.49 × 10<sup>–3</sup> cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> in optimized poly(methyl methacrylate) (PMMA)-gated OFETs, with an on/off current ratio exceeding 10<sup>3</sup>. Consequently, FBDT-Fu-based silver bismuth sulfide (AgBiS<sub>2</sub>) nanocrystal PVs achieved a power conversion efficiency of 5.5%, a high fill factor of 55.46%, and an open-circuit voltage of 0.504 V under 1-sun illumination. This molecular design strategy offers an effective approach for optimizing the electrical properties of organic conjugated semiconductors for next-generation optoelectronic devices.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 9","pages":"3721 - 3728"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-025-01039-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical substitution is a propitious strategy for optimizing the charge transport properties of π-conjugated donor–acceptor (D–A) semiconducting materials in organic electronic devices. To explore the effects of fluorine substitution on the electronic and structural properties of organic field-effect transistors (OFETs) and photovoltaics (PVs), two new benzo[1,2-b:4,5-b′]dithiophene (BDT)-based hole transport polymers (HTPs) were synthesized and characterized. The BDT monomers consisting of 2,6-bis(trimethytin)-4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene monomer (BDT monomer), and (4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane) (FBDT monomer) were combined with 2,5-dibromofuran to produce BDT-Fu and FBDT-Fu HTPs. Fluorine integration significantly improved the molecular structure, optical, electrochemical, and morphological properties of these polymers, and the optoelectronic properties of the resulting devices. In FBDT-Fu, the fluorination enhanced crystallinity, optical absorption, and morphology, leading improvement in hole mobility of 3.49 × 10–3 cm2 V–1 s–1 in optimized poly(methyl methacrylate) (PMMA)-gated OFETs, with an on/off current ratio exceeding 103. Consequently, FBDT-Fu-based silver bismuth sulfide (AgBiS2) nanocrystal PVs achieved a power conversion efficiency of 5.5%, a high fill factor of 55.46%, and an open-circuit voltage of 0.504 V under 1-sun illumination. This molecular design strategy offers an effective approach for optimizing the electrical properties of organic conjugated semiconductors for next-generation optoelectronic devices.

用于增强有机晶体管和纳米晶体光伏的苯二噻吩基空穴传输聚合物的主氟化
化学取代是优化π共轭给受体(D-A)半导体材料在有机电子器件中电荷输运性能的一种有利策略。为了探索氟取代对有机场效应晶体管(ofet)和光伏(pv)的电子和结构性能的影响,合成了两种新型苯并[1,2-b:4,5-b ']二噻吩(BDT)基空穴传输聚合物(HTPs)并对其进行了表征。由2,6-二(三甲基锡)-4,8-二(5-(2-乙基己基)噻吩-2-基)苯并[1,2-b:4,5-b']二噻吩-2-基]苯并[1,2-b:4,5-b']二噻吩-2,6-二基)二(三甲基锡烷)(FBDT单体)组成的BDT单体与2,5-二溴呋喃结合制备了BDT- fu和FBDT- fu HTPs。氟集成显著改善了这些聚合物的分子结构、光学、电化学和形态性质,以及由此产生的器件的光电性质。在FBDT-Fu中,氟化增强了结晶度、光吸收和形貌,优化后的聚甲基丙烯酸甲酯(PMMA)门控ofet的空穴迁移率提高了3.49 × 10-3 cm2 V-1 s-1,开/关电流比超过103。因此,基于fbdt - fu的硫化铋银(AgBiS2)纳米晶体pv在1太阳光照下的功率转换效率为5.5%,填充系数高达55.46%,开路电压为0.504 V。这种分子设计策略为优化下一代光电器件中有机共轭半导体的电性能提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信