Measurement and analysis of transient heat flux on a conical surface using platinum thin film gauges

Q1 Chemical Engineering
Rishikesh Goswami , Rakesh Kumar , Bipin Kumar Singh , Amit Kumar , Ashwini Kumar , Jayant Giri , Eman Ramadan Elsharkawy
{"title":"Measurement and analysis of transient heat flux on a conical surface using platinum thin film gauges","authors":"Rishikesh Goswami ,&nbsp;Rakesh Kumar ,&nbsp;Bipin Kumar Singh ,&nbsp;Amit Kumar ,&nbsp;Ashwini Kumar ,&nbsp;Jayant Giri ,&nbsp;Eman Ramadan Elsharkawy","doi":"10.1016/j.ijft.2025.101370","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, both experimental and numerical methods to analyse the transient surface temperature and convective heat flux on a quartz-based conical body with laboratory-fabricated platinum thin-film gauges (film thickness 0.1–1.0 µm on 6 mm <em>Ø</em> × 10 mm quartz substrates) is carried out. During fabrication, platinum paste is dried at 650 °C and silver contacts at 350 °C, yielding a gauge resistance of 4–8 Ω and a measured temperature coefficient of resistance (TCR) of 0.02727 K⁻¹. Additionally, the work covers the dynamic calibration at a steady 10 mA current is supplied to each gauge while high-speed air at 318 K and velocities of 3–5 m/s impinged on the cone for 1 s. Transient temperature histories (300.0–300.7 K) are recorded at 0.01 ms intervals and processed via a one-dimensional semi-infinite conduction model to recover surface heat flux. Numerical simulations in ANSYS Fluent, employing a standard k-ε turbulence model with 0.01 ms time steps (100 steps) and adiabatic, no-slip boundary conditions, reproduced the same flow and thermal conditions. Experimental and numerical heat-flux signals exhibited excellent agreement (maximum convective heat flux ≈ 8 kW/m² at the stagnation point, with deviations &lt; 5%), thereby validating the cost-effective gauge fabrication and calibration methodology and demonstrating its suitability for millisecond-scale surface-heat-flux measurements.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"29 ","pages":"Article 101370"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725003167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, both experimental and numerical methods to analyse the transient surface temperature and convective heat flux on a quartz-based conical body with laboratory-fabricated platinum thin-film gauges (film thickness 0.1–1.0 µm on 6 mm Ø × 10 mm quartz substrates) is carried out. During fabrication, platinum paste is dried at 650 °C and silver contacts at 350 °C, yielding a gauge resistance of 4–8 Ω and a measured temperature coefficient of resistance (TCR) of 0.02727 K⁻¹. Additionally, the work covers the dynamic calibration at a steady 10 mA current is supplied to each gauge while high-speed air at 318 K and velocities of 3–5 m/s impinged on the cone for 1 s. Transient temperature histories (300.0–300.7 K) are recorded at 0.01 ms intervals and processed via a one-dimensional semi-infinite conduction model to recover surface heat flux. Numerical simulations in ANSYS Fluent, employing a standard k-ε turbulence model with 0.01 ms time steps (100 steps) and adiabatic, no-slip boundary conditions, reproduced the same flow and thermal conditions. Experimental and numerical heat-flux signals exhibited excellent agreement (maximum convective heat flux ≈ 8 kW/m² at the stagnation point, with deviations < 5%), thereby validating the cost-effective gauge fabrication and calibration methodology and demonstrating its suitability for millisecond-scale surface-heat-flux measurements.
用铂薄膜计测量和分析锥形表面的瞬态热流密度
在本研究中,采用实验和数值方法对石英基锥形体的瞬态表面温度和对流热通量进行了分析,采用实验室自制的铂薄膜计(薄膜厚度为0.1-1.0µm,在6 mm Ø × 10 mm石英衬底上)。在制作过程中,铂膏在650°C下干燥,银接点在350°C下干燥,测量电阻为4-8 Ω,测量电阻温度系数(TCR)为0.02727 K⁻¹。此外,该工作还包括在向每个仪表提供稳定的10 mA电流的情况下进行动态校准,同时高速空气在318 K和3-5 m/s的速度下撞击锥体1 s。以0.01 ms的间隔记录瞬态温度历史(300.0-300.7 K),并通过一维半无限传导模型进行处理以恢复表面热通量。在ANSYS Fluent中采用标准k-ε湍流模型,以0.01 ms时间步长(100步)和绝热无滑移边界条件进行数值模拟,再现了相同的流动和热条件。实验和数值热通量信号表现出极好的一致性(在驻点最大对流热通量≈8 kW/m²,偏差为<;5%),从而验证了具有成本效益的仪表制造和校准方法,并证明其适用于毫秒尺度的表面热通量测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信