Nondestructive In Operando Imaging of Thin Film Composite Membrane Compaction Enhanced by AI-Based Segmentation

IF 8.8 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Jishan Wu, Yara Suleiman, Jinlong He, Minhao Xiao, Parisa Mahyari, Mingzhe Li, Lin Zhou, Yuanmiaoliang Chen, Hanqing Fan, N. A. Sreejith, Hariswaran Sitaraman, Marc Day, Ying Li, Jeffrey R. McCutcheon, Menachem Elimelech, Sina Shahbazmohamadi* and Eric M. V. Hoek*, 
{"title":"Nondestructive In Operando Imaging of Thin Film Composite Membrane Compaction Enhanced by AI-Based Segmentation","authors":"Jishan Wu,&nbsp;Yara Suleiman,&nbsp;Jinlong He,&nbsp;Minhao Xiao,&nbsp;Parisa Mahyari,&nbsp;Mingzhe Li,&nbsp;Lin Zhou,&nbsp;Yuanmiaoliang Chen,&nbsp;Hanqing Fan,&nbsp;N. A. Sreejith,&nbsp;Hariswaran Sitaraman,&nbsp;Marc Day,&nbsp;Ying Li,&nbsp;Jeffrey R. McCutcheon,&nbsp;Menachem Elimelech,&nbsp;Sina Shahbazmohamadi* and Eric M. V. Hoek*,&nbsp;","doi":"10.1021/acs.estlett.5c00529","DOIUrl":null,"url":null,"abstract":"<p >Reverse osmosis (RO) membranes are essential for desalination and water reuse, yet their permeability declines in high-pressure applications due to membrane compaction. This study investigates the structural and functional responses of commercial brackish, seawater, and high-pressure RO membranes at applied pressures up to 120 bar using a multiscale, nondestructive <i>in operando</i> scanning electron microscopy (<i>i</i>SEM) imaging platform. The <i>i</i>SEM technique reveals progressive densification across the composite membrane structure, which correlates with observed declines in water and solute permeance. To quantify these structural changes with greater fidelity, we combined X-ray computed tomography with AI-based segmentation enabling precise analysis of pore size distribution and thickness of the polysulfone support layer. Compared to traditional thresholding, AI segmentation accurately delineates material phases and void spaces, enhancing the reproducibility and resolution of morphological assessments. The results demonstrate that compaction-induced reductions in porosity and thickness strongly impact membrane transport properties. These findings provide mechanistic insights into the compaction behavior of RO membranes and underscore the potential for advanced imaging and AI-driven data analysis to guide the design of next-generation membranes with improved mechanical resilience and operational longevity.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"12 8","pages":"1069–1074"},"PeriodicalIF":8.8000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.5c00529","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Reverse osmosis (RO) membranes are essential for desalination and water reuse, yet their permeability declines in high-pressure applications due to membrane compaction. This study investigates the structural and functional responses of commercial brackish, seawater, and high-pressure RO membranes at applied pressures up to 120 bar using a multiscale, nondestructive in operando scanning electron microscopy (iSEM) imaging platform. The iSEM technique reveals progressive densification across the composite membrane structure, which correlates with observed declines in water and solute permeance. To quantify these structural changes with greater fidelity, we combined X-ray computed tomography with AI-based segmentation enabling precise analysis of pore size distribution and thickness of the polysulfone support layer. Compared to traditional thresholding, AI segmentation accurately delineates material phases and void spaces, enhancing the reproducibility and resolution of morphological assessments. The results demonstrate that compaction-induced reductions in porosity and thickness strongly impact membrane transport properties. These findings provide mechanistic insights into the compaction behavior of RO membranes and underscore the potential for advanced imaging and AI-driven data analysis to guide the design of next-generation membranes with improved mechanical resilience and operational longevity.

Abstract Image

基于ai分割增强的薄膜复合膜压实的无损操作成像
反渗透(RO)膜对于海水淡化和水再利用至关重要,但由于膜压实,其渗透性在高压应用中下降。本研究使用多尺度、非破坏性的操作扫描电子显微镜(iSEM)成像平台,研究了商用半咸水、海水和高压反渗透膜在高达120 bar的压力下的结构和功能响应。iSEM技术揭示了复合膜结构的逐渐致密化,这与观察到的水和溶质渗透率的下降有关。为了以更高的保真度量化这些结构变化,我们将x射线计算机断层扫描与基于人工智能的分割相结合,能够精确分析聚砜支撑层的孔径分布和厚度。与传统阈值分割相比,人工智能分割可以准确地描绘材料相和空隙空间,提高形态评估的再现性和分辨率。结果表明,压实引起的孔隙率和厚度的降低强烈影响膜的输运性能。这些发现为反渗透膜的压实行为提供了机理见解,并强调了先进成像和人工智能驱动的数据分析的潜力,以指导设计具有更高机械弹性和使用寿命的下一代膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science & Technology Letters Environ.
Environmental Science & Technology Letters Environ. ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
17.90
自引率
3.70%
发文量
163
期刊介绍: Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信