A blueprint for biomolecular condensation driven by bacterial microcompartment encapsulation peptides

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Daniel S. Trettel, Cesar A. López, Eliana Rodriguez, Babetta L. Marrone, Cesar Raul Gonzalez-Esquer
{"title":"A blueprint for biomolecular condensation driven by bacterial microcompartment encapsulation peptides","authors":"Daniel S. Trettel, Cesar A. López, Eliana Rodriguez, Babetta L. Marrone, Cesar Raul Gonzalez-Esquer","doi":"10.1038/s41467-025-62772-0","DOIUrl":null,"url":null,"abstract":"<p>Bacterial microcompartments are protein organelles with diverse metabolic capabilities. Their functional diversity is determined by an enzymatic core that is sequestered within a structurally conserved protein shell architecture. Segregation of protein cargo into the bacterial microcompartment is enabled by encapsulation peptides, which are short helical domains fused to core proteins through a disordered linker. Here, we investigate how encapsulation peptides drive multicomponent cargo assembly into biomolecular condensates. In vitro experiments supported by molecular dynamics simulations demonstrate the importance of both conserved hydrophobic packing and electrostatic interactions in stabilizing trimeric encapsulation peptide bundles. Topological rearrangements of encapsulation peptide domains can drive programmable liquid- or gel-like partitioning in vitro and in vivo. This partitioning is found to be encapsulation peptide-specific, modular, and can co-assemble at least three fluorescent reporters. In summary, we describe the molecular features necessary to drive biomolecular condensation using a widespread peptide tag. This work can serve as a blueprint for implementing encapsulation peptide biotechnology across diverse applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"18 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62772-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial microcompartments are protein organelles with diverse metabolic capabilities. Their functional diversity is determined by an enzymatic core that is sequestered within a structurally conserved protein shell architecture. Segregation of protein cargo into the bacterial microcompartment is enabled by encapsulation peptides, which are short helical domains fused to core proteins through a disordered linker. Here, we investigate how encapsulation peptides drive multicomponent cargo assembly into biomolecular condensates. In vitro experiments supported by molecular dynamics simulations demonstrate the importance of both conserved hydrophobic packing and electrostatic interactions in stabilizing trimeric encapsulation peptide bundles. Topological rearrangements of encapsulation peptide domains can drive programmable liquid- or gel-like partitioning in vitro and in vivo. This partitioning is found to be encapsulation peptide-specific, modular, and can co-assemble at least three fluorescent reporters. In summary, we describe the molecular features necessary to drive biomolecular condensation using a widespread peptide tag. This work can serve as a blueprint for implementing encapsulation peptide biotechnology across diverse applications.

Abstract Image

细菌微室包封肽驱动的生物分子缩聚蓝图
细菌微室是具有多种代谢能力的蛋白质细胞器。它们的功能多样性是由酶核决定的,酶核被隔离在一个结构保守的蛋白质壳结构中。包裹肽是一种短的螺旋结构域,通过一个无序的连接体与核心蛋白融合,从而使蛋白质货物分离到细菌的微室中。在这里,我们研究了封装肽如何驱动多组分货物组装成生物分子凝聚体。分子动力学模拟支持的体外实验证明了保守疏水包装和静电相互作用在稳定三聚体包封肽束中的重要性。在体外和体内,封装肽域的拓扑重排可以驱动可编程的液体或凝胶样分配。这种划分被发现是封装肽特异性的,模块化的,并且可以共同组装至少三个荧光报告。总之,我们描述了必要的分子特征,以驱动生物分子凝聚使用广泛的肽标签。这项工作可以作为在不同应用中实施封装肽生物技术的蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信