{"title":"Plasmid-driven clonal expansion of multidrug-resistant monophasic Salmonella Typhimurium in a Global Food Trade Hub.","authors":"Dingjie Huang,Ziqi Wu,Yixiang Jiang,Lulu Hu,Rui Cai,Xi Yang,Chen Du,Shiting Chen,Panpan Yang,Bingchan Guo,Xiaolu Shi,Shuang Wu,Yinghui Li,Zhemin Zhou,Qinghua Hu","doi":"10.1080/22221751.2025.2542251","DOIUrl":null,"url":null,"abstract":"Shenzhen, a major port city with a heavily imported food supply, offers a critical setting to examine the spread and adaptation of multidrug-resistant Salmonella 1,4,[5],12:i: - (S. 1,4,[5],12:i:-). This study integrates 17 years of genomic, epidemiological, and food safety data. We explored the serovar's population structure, antibiotic resistance gene (ARG) patterns, and transmission dynamics locally and globally. Our analyses revealed substantial rise in S. 1,4,[5],12:i: - prevalence among non-typhoidal Salmonella isolates over the past 17 years, from 2.27% in 2007 to 24.79% in 2023. S. 1,4,[5],12:i: - was predominated by ST34 (97.9%), with high genotypic resistance to aminoglycosides (100%), tetracyclines (96.6%), β-lactams (89.3%), and sulphonamides (88.5%). Phylogenetic analysis separated S. 1,4,[5],12:i: - into four clades. Clade 4, first detected in Shenzhen in 2013, emerged as the predominant lineage by 2023 (56.9%). This clade exhibited minimal genetic diversity (≤ 38 core SNPs), with adaptive traits linked to the acquisition of resistance-associated plasmids. Notably, plasmid-driven ARGs, including carbapenem resistance genes, have emerged as a growing concern. Transmission analysis identified two key transmission dynamics: transient outbreaks primarily involving food handlers and persistent lineages sustained through local and international spread, often facilitated by the food supply chain. These findings underscore the role of occupational carriers and imported food products in the dissemination of ARGs, emphasizing the need for enhanced surveillance and improved health and hygiene practices for food handlers. This study provides a comprehensive molecular epidemiological framework for addressing multidrug-resistant Salmonella in globalized urban food hubs, offering a foundation for future surveillance and control efforts.","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":"36 1","pages":"2542251"},"PeriodicalIF":7.5000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Microbes & Infections","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/22221751.2025.2542251","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Shenzhen, a major port city with a heavily imported food supply, offers a critical setting to examine the spread and adaptation of multidrug-resistant Salmonella 1,4,[5],12:i: - (S. 1,4,[5],12:i:-). This study integrates 17 years of genomic, epidemiological, and food safety data. We explored the serovar's population structure, antibiotic resistance gene (ARG) patterns, and transmission dynamics locally and globally. Our analyses revealed substantial rise in S. 1,4,[5],12:i: - prevalence among non-typhoidal Salmonella isolates over the past 17 years, from 2.27% in 2007 to 24.79% in 2023. S. 1,4,[5],12:i: - was predominated by ST34 (97.9%), with high genotypic resistance to aminoglycosides (100%), tetracyclines (96.6%), β-lactams (89.3%), and sulphonamides (88.5%). Phylogenetic analysis separated S. 1,4,[5],12:i: - into four clades. Clade 4, first detected in Shenzhen in 2013, emerged as the predominant lineage by 2023 (56.9%). This clade exhibited minimal genetic diversity (≤ 38 core SNPs), with adaptive traits linked to the acquisition of resistance-associated plasmids. Notably, plasmid-driven ARGs, including carbapenem resistance genes, have emerged as a growing concern. Transmission analysis identified two key transmission dynamics: transient outbreaks primarily involving food handlers and persistent lineages sustained through local and international spread, often facilitated by the food supply chain. These findings underscore the role of occupational carriers and imported food products in the dissemination of ARGs, emphasizing the need for enhanced surveillance and improved health and hygiene practices for food handlers. This study provides a comprehensive molecular epidemiological framework for addressing multidrug-resistant Salmonella in globalized urban food hubs, offering a foundation for future surveillance and control efforts.
期刊介绍:
Emerging Microbes & Infections is a peer-reviewed, open-access journal dedicated to publishing research at the intersection of emerging immunology and microbiology viruses.
The journal's mission is to share information on microbes and infections, particularly those gaining significance in both biological and clinical realms due to increased pathogenic frequency. Emerging Microbes & Infections is committed to bridging the scientific gap between developed and developing countries.
This journal addresses topics of critical biological and clinical importance, including but not limited to:
- Epidemic surveillance
- Clinical manifestations
- Diagnosis and management
- Cellular and molecular pathogenesis
- Innate and acquired immune responses between emerging microbes and their hosts
- Drug discovery
- Vaccine development research
Emerging Microbes & Infections invites submissions of original research articles, review articles, letters, and commentaries, fostering a platform for the dissemination of impactful research in the field.