Ultrahigh-throughput single-pixel complex-field microscopy with frequency-comb acousto-optic coherent encoding (FACE)

IF 23.4 Q1 OPTICS
Daixuan Wu, Yuecheng Shen, Zhongzheng Zhu, Tijian Li, Jiawei Luo, Zhengyang Wang, Jiaming Liang, Zhiling Zhang, Yunhua Yao, Dalong Qi, Lianzhong Deng, Zhenrong Sun, Meng Liu, Zhi-Chao Luo, Shian Zhang
{"title":"Ultrahigh-throughput single-pixel complex-field microscopy with frequency-comb acousto-optic coherent encoding (FACE)","authors":"Daixuan Wu, Yuecheng Shen, Zhongzheng Zhu, Tijian Li, Jiawei Luo, Zhengyang Wang, Jiaming Liang, Zhiling Zhang, Yunhua Yao, Dalong Qi, Lianzhong Deng, Zhenrong Sun, Meng Liu, Zhi-Chao Luo, Shian Zhang","doi":"10.1038/s41377-025-01931-w","DOIUrl":null,"url":null,"abstract":"<p>Single-pixel imaging (SPI) is a promising technology for optical imaging beyond the visible spectrum, where commercial cameras are expensive or unavailable. However, limitations such as slow pattern projection rates and time-consuming reconstruction algorithms hinder its throughput for real-time imaging. Consequently, conventional SPI is inadequate for high-speed, high-resolution tasks. To address these challenges, we developed an ultrahigh-throughput single-pixel complex-field microscopy (SPCM) system utilizing frequency-comb acousto-optic coherent encoding (FACE). This system enables real-time complex-field monitoring in the non-visible domain. Operating at 1030 nm, our system achieves a record-high space-bandwidth-time product (SBP-T) of 1.3 × 10<sup>7</sup>, surpassing previous SPCM (~10<sup>4</sup>), SPI (~10<sup>5</sup>), and even certain types of commercial near-infrared cameras (~10<sup>6</sup>). It supports real-time streaming at 1000 Hz with a frame size of 80 × 81 pixels and a lateral resolution of 3.76 μm across an approximately 300 μm field of view. We validated the system by imaging dynamic transparent scenes, including microfluidics, live microorganisms, chemical reactions, as well as imaging through scattering media. This advancement offers a superior solution for high-speed, high-resolution complex-field imaging beyond the visible spectrum, significantly enhancing SPI performance across various applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"143 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01931-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-pixel imaging (SPI) is a promising technology for optical imaging beyond the visible spectrum, where commercial cameras are expensive or unavailable. However, limitations such as slow pattern projection rates and time-consuming reconstruction algorithms hinder its throughput for real-time imaging. Consequently, conventional SPI is inadequate for high-speed, high-resolution tasks. To address these challenges, we developed an ultrahigh-throughput single-pixel complex-field microscopy (SPCM) system utilizing frequency-comb acousto-optic coherent encoding (FACE). This system enables real-time complex-field monitoring in the non-visible domain. Operating at 1030 nm, our system achieves a record-high space-bandwidth-time product (SBP-T) of 1.3 × 107, surpassing previous SPCM (~104), SPI (~105), and even certain types of commercial near-infrared cameras (~106). It supports real-time streaming at 1000 Hz with a frame size of 80 × 81 pixels and a lateral resolution of 3.76 μm across an approximately 300 μm field of view. We validated the system by imaging dynamic transparent scenes, including microfluidics, live microorganisms, chemical reactions, as well as imaging through scattering media. This advancement offers a superior solution for high-speed, high-resolution complex-field imaging beyond the visible spectrum, significantly enhancing SPI performance across various applications.

Abstract Image

频率梳声光相干编码(FACE)的超高通量单像素复场显微镜
单像素成像(SPI)是一种很有前途的光学成像技术,用于超越可见光谱,商用相机价格昂贵或不可用。然而,缓慢的模式投影速率和耗时的重建算法等限制阻碍了其实时成像的吞吐量。因此,传统SPI不适用于高速、高分辨率任务。为了解决这些挑战,我们开发了一种利用频率梳声光相干编码(FACE)的超高通量单像素复杂场显微镜(SPCM)系统。该系统可实现非可见域的实时复杂场监控。我们的系统在1030nm工作,实现了创纪录的1.3 × 107的空间带宽-时间产品(SBP-T),超过了以前的SPCM (~104), SPI(~105),甚至某些类型的商用近红外相机(~106)。它支持1000 Hz的实时流,帧大小为80 × 81像素,横向分辨率为3.76 μm,视野范围约为300 μm。我们通过成像动态透明场景来验证该系统,包括微流体、活微生物、化学反应以及通过散射介质成像。这一进步为超越可见光谱的高速、高分辨率复杂场成像提供了卓越的解决方案,显著提高了各种应用中的SPI性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信