{"title":"Electrical-gain-assisted circularly polarized photodetection based on chiral plasmonic metamaterials","authors":"Chenghao Chen, Zhenhai Yang, Tianyi Hang, Yining Hao, Yijing Chen, Chengzhuang Zhang, Jiong Yang, Xiaoyi Liu, Xiaofeng Li, Guoyang Cao","doi":"10.1038/s41377-025-01932-9","DOIUrl":null,"url":null,"abstract":"<p>Circularly polarized light (CPL) detectors based on chiral organic materials or inorganic structures hold great potential for highly integrated on-chip applications; however, these devices usually have to seek an optimal balance among the asymmetry factor (<i>g</i>), responsivity (<i>R</i>), and stability. Here, we aim to break such a limitation by combining chiral inorganic plasmonic metamaterials with electrical gain, by which one can enhance both <i>g</i> and <i>R</i> while simultaneously securing the stability. We demonstrate a CPL detector based on “S”-shaped chiral Ag nanowires/InAs/Si heterostructures, where the meticulous construction of the “S”-shaped chiral Ag nanowires with the overlaying InAs channel enables a substantial absorption asymmetry in InAs due to differentiated localized surface plasmon resonances excited by left- and right-circularly polarized (LCP and RCP) light. The InAs serves as a conductive channel, achieving significant electrical gain through photoconductive effects assisted by photogating, gate modulation, and trap effects. The proposed inorganic stable device exhibits a high electrical <i>g</i> of ~1.56, an ultra-high <i>R</i> of ~33,900 A W<sup>−1</sup>, a large specific detectivity of ~1.8 × 10<sup>11</sup> Jones, and an ultra-short response time of ~23 ns, with the high performance achieved in a broad spectral range from 2 μm to 2.8 μm. Ultimately, by encoding ASCII code 1 and 0 onto LCP and RCP light, respectively, and leveraging the device’s heightened discrimination and response performance to these polarizations, we demonstrate a simple yet key-free optical encryption communication scheme at the device level, highlighting its extensive potential for system-level applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"12 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01932-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Circularly polarized light (CPL) detectors based on chiral organic materials or inorganic structures hold great potential for highly integrated on-chip applications; however, these devices usually have to seek an optimal balance among the asymmetry factor (g), responsivity (R), and stability. Here, we aim to break such a limitation by combining chiral inorganic plasmonic metamaterials with electrical gain, by which one can enhance both g and R while simultaneously securing the stability. We demonstrate a CPL detector based on “S”-shaped chiral Ag nanowires/InAs/Si heterostructures, where the meticulous construction of the “S”-shaped chiral Ag nanowires with the overlaying InAs channel enables a substantial absorption asymmetry in InAs due to differentiated localized surface plasmon resonances excited by left- and right-circularly polarized (LCP and RCP) light. The InAs serves as a conductive channel, achieving significant electrical gain through photoconductive effects assisted by photogating, gate modulation, and trap effects. The proposed inorganic stable device exhibits a high electrical g of ~1.56, an ultra-high R of ~33,900 A W−1, a large specific detectivity of ~1.8 × 1011 Jones, and an ultra-short response time of ~23 ns, with the high performance achieved in a broad spectral range from 2 μm to 2.8 μm. Ultimately, by encoding ASCII code 1 and 0 onto LCP and RCP light, respectively, and leveraging the device’s heightened discrimination and response performance to these polarizations, we demonstrate a simple yet key-free optical encryption communication scheme at the device level, highlighting its extensive potential for system-level applications.