Optomechanical control of long-lived bulk acoustic phonons in the quantum regime

IF 18.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Hilel Hagai Diamandi, Yizhi Luo, David Mason, Tevfik Bulent Kanmaz, Sayan Ghosh, Margaret Pavlovich, Taekwan Yoon, Ryan Behunin, Shruti Puri, Jack G. E. Harris, Peter T. Rakich
{"title":"Optomechanical control of long-lived bulk acoustic phonons in the quantum regime","authors":"Hilel Hagai Diamandi, Yizhi Luo, David Mason, Tevfik Bulent Kanmaz, Sayan Ghosh, Margaret Pavlovich, Taekwan Yoon, Ryan Behunin, Shruti Puri, Jack G. E. Harris, Peter T. Rakich","doi":"10.1038/s41567-025-02989-4","DOIUrl":null,"url":null,"abstract":"High-fidelity quantum optomechanical control of a mechanical oscillator requires the ability to perform efficient, low-noise operations on long-lived phononic excitations. Microfabricated high-overtone bulk acoustic wave resonators (μHBARs) support high-frequency mechanical modes above 10 GHz with coherence times exceeding one millisecond. Here we demonstrate a μHBAR-based cavity optomechanical system that permits quantum optomechanical control of individual high-coherence phonon modes. We perform laser cooling of the phonon modes from an occupation of approximately 22 phonons to fewer than 0.4, corresponding to laser-based ground-state cooling of a mechanical object with a mass of 7.5 μg. During the cooling process we do not observe any absorption-induced heating, demonstrating the resilience of the HBAR optomechanical systems against parasitic heating. Our work demonstrates that μHBARs are promising as the basis for quantum optomechanical systems with robustness to decoherence that is necessary for efficient, low-noise photon–phonon conversion. A massive phonon mode in a high-overtone bulk acoustic wave resonator has been laser cooled close to its ground state. Its robustness to decoherence establishes the potential of these devices for quantum technologies.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 9","pages":"1482-1488"},"PeriodicalIF":18.4000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41567-025-02989-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-025-02989-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-fidelity quantum optomechanical control of a mechanical oscillator requires the ability to perform efficient, low-noise operations on long-lived phononic excitations. Microfabricated high-overtone bulk acoustic wave resonators (μHBARs) support high-frequency mechanical modes above 10 GHz with coherence times exceeding one millisecond. Here we demonstrate a μHBAR-based cavity optomechanical system that permits quantum optomechanical control of individual high-coherence phonon modes. We perform laser cooling of the phonon modes from an occupation of approximately 22 phonons to fewer than 0.4, corresponding to laser-based ground-state cooling of a mechanical object with a mass of 7.5 μg. During the cooling process we do not observe any absorption-induced heating, demonstrating the resilience of the HBAR optomechanical systems against parasitic heating. Our work demonstrates that μHBARs are promising as the basis for quantum optomechanical systems with robustness to decoherence that is necessary for efficient, low-noise photon–phonon conversion. A massive phonon mode in a high-overtone bulk acoustic wave resonator has been laser cooled close to its ground state. Its robustness to decoherence establishes the potential of these devices for quantum technologies.

Abstract Image

Abstract Image

量子体制中长寿命体声子的光力学控制
机械振荡器的高保真量子光力学控制需要在长寿命声子激发上执行高效、低噪声操作的能力。微加工高泛音体声波谐振器(μ hbar)支持10 GHz以上的高频机械模式,相干时间超过1毫秒。在这里,我们展示了一个基于μ hbar的腔光力学系统,该系统允许量子光力学控制单个高相干声子模式。我们对声子模式进行激光冷却,从大约22个声子到小于0.4个声子,对应于一个质量为7.5 μg的机械物体的激光基态冷却。在冷却过程中,我们没有观察到任何吸收引起的加热,这证明了HBAR光机械系统对寄生加热的弹性。我们的工作表明,μ hbar是有希望作为量子光力学系统的基础,具有退相干的鲁棒性,这是高效,低噪声光子-声子转换所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信