Yi Jiang,Yao Long,Xiangran Cheng,Haibo Jiang,Chuanfa Li,Meng Liao,Xuemei Sun,Peining Chen,Chen Zhao,Huisheng Peng,Bingjie Wang
{"title":"Ah-Level Large-Format Fiber-Shaped Lithium-Ion Batteries Enabled by Effective Field Homogenization.","authors":"Yi Jiang,Yao Long,Xiangran Cheng,Haibo Jiang,Chuanfa Li,Meng Liao,Xuemei Sun,Peining Chen,Chen Zhao,Huisheng Peng,Bingjie Wang","doi":"10.1002/adma.202506218","DOIUrl":null,"url":null,"abstract":"Large-format fiber-shaped lithium-ion batteries (L-FLIBs) hold great promise for next-generation flexible and wearable electronics but suffer significant cell polarization and insufficient active material utilization after scaling up. The heterogeneous spatial electric field distribution fundamentally affects the electrochemical behavior and jeopardizes the performance of L-FLIBs, yet its influence on 1D fiber structures remains unexplored. Here, the electron transport mechanisms are systematically investigated and develop an optimized dual-terminal cell configuration for field homogenizing. Through equivalent circuit modeling and experimental validation, it is revealed that strategic electron collection terminal design establishes symmetric electric fields along the fiber length, effectively addressing the fundamental challenge of electrochemical heterogeneity and enhancing the redox kinetics for L-FLIBs. Thereby, a 60% internal resistance reduction is achieved and successfully fabricated a 10-m-long L-FLIBs with an unprecedented 1 Ah high capacity for a single fiber cell. The practical capability of this design is demonstrated by integrating large-format batteries into a fabric power bank for portable electronics.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"30 1","pages":"e06218"},"PeriodicalIF":26.8000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202506218","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Large-format fiber-shaped lithium-ion batteries (L-FLIBs) hold great promise for next-generation flexible and wearable electronics but suffer significant cell polarization and insufficient active material utilization after scaling up. The heterogeneous spatial electric field distribution fundamentally affects the electrochemical behavior and jeopardizes the performance of L-FLIBs, yet its influence on 1D fiber structures remains unexplored. Here, the electron transport mechanisms are systematically investigated and develop an optimized dual-terminal cell configuration for field homogenizing. Through equivalent circuit modeling and experimental validation, it is revealed that strategic electron collection terminal design establishes symmetric electric fields along the fiber length, effectively addressing the fundamental challenge of electrochemical heterogeneity and enhancing the redox kinetics for L-FLIBs. Thereby, a 60% internal resistance reduction is achieved and successfully fabricated a 10-m-long L-FLIBs with an unprecedented 1 Ah high capacity for a single fiber cell. The practical capability of this design is demonstrated by integrating large-format batteries into a fabric power bank for portable electronics.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.