Fixed-time optimal time-varying formation control for unmanned surface vehicle systems based on reinforcement learning.

IF 6.5
Qiaokun Kang, Qintao Gan, Ruihong Li, Luke Li, Guoquan Ren
{"title":"Fixed-time optimal time-varying formation control for unmanned surface vehicle systems based on reinforcement learning.","authors":"Qiaokun Kang, Qintao Gan, Ruihong Li, Luke Li, Guoquan Ren","doi":"10.1016/j.isatra.2025.07.057","DOIUrl":null,"url":null,"abstract":"<p><p>This article proposes the distributed fixed-time optimal time-varying formation control (TVFC) strategy based on reinforcement learning (RL) for unmanned surface vehicle systems (USVSs) with partially unmeasurable states and unknown dynamics. The fixed-time adaptive neural network state observer (FANNSO) is introduced for reconstructing unknown dynamics and unmeasurable states of the system. On this basis, a distributed optimization performance index function containing exponential terms is proposed, and a distributed fixed-time optimal TVFC strategy is developed by combining the actor-critic structure. This strategy achieves the dual objectives of formation control and cost optimization by adaptively adjusting the controller through the RL algorithm. Theoretical analyses show that the proposed control strategy can make the error signals bounded within a fixed time. Simulation results demonstrate the effectiveness and superiority of the method.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.07.057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes the distributed fixed-time optimal time-varying formation control (TVFC) strategy based on reinforcement learning (RL) for unmanned surface vehicle systems (USVSs) with partially unmeasurable states and unknown dynamics. The fixed-time adaptive neural network state observer (FANNSO) is introduced for reconstructing unknown dynamics and unmeasurable states of the system. On this basis, a distributed optimization performance index function containing exponential terms is proposed, and a distributed fixed-time optimal TVFC strategy is developed by combining the actor-critic structure. This strategy achieves the dual objectives of formation control and cost optimization by adaptively adjusting the controller through the RL algorithm. Theoretical analyses show that the proposed control strategy can make the error signals bounded within a fixed time. Simulation results demonstrate the effectiveness and superiority of the method.

基于强化学习的无人水面车辆系统定时最优时变编队控制。
针对部分状态不可测和动态未知的无人水面车辆系统,提出了一种基于强化学习的分布式固定时间最优时变编队控制策略。引入定时自适应神经网络状态观测器(FANNSO)对系统的未知动态和不可测状态进行重构。在此基础上,提出了包含指数项的分布式优化性能指标函数,并结合演员-评论家结构提出了分布式固定时间最优TVFC策略。该策略通过RL算法自适应调整控制器,实现了编队控制和成本优化的双重目标。理论分析表明,所提出的控制策略能使误差信号在固定时间内有界。仿真结果验证了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信