{"title":"Vehicle-to-everything decision optimization and cloud control based on deep reinforcement learning.","authors":"Zhenhai Gao, Dayu Liu, Chengyuan Zheng","doi":"10.1038/s41598-025-12772-3","DOIUrl":null,"url":null,"abstract":"<p><p>To address the challenges of decision optimization and road segment hazard assessment within complex traffic environments, and to enhance the safety and responsiveness of autonomous driving, a Vehicle-to-Everything (V2X) decision framework is proposed. This framework is structured into three modules: vehicle perception, decision-making, and execution. The vehicle perception module integrates sensor fusion techniques to capture real-time environmental data, employing deep neural networks to extract essential information. In the decision-making module, deep reinforcement learning algorithms are applied to optimize decision processes by maximizing expected rewards. Meanwhile, the road segment hazard classification module, utilizing both historical traffic data and real-time perception information, adopts a hazard evaluation model to classify road conditions automatically, providing real-time feedback to guide vehicle decision-making. Furthermore, an autonomous driving cloud control platform is designed, augmenting decision-making capabilities through centralized computing resources, enabling large-scale data analysis, and facilitating collaborative optimization. Experimental evaluations conducted within simulation environments and utilizing the KITTI dataset demonstrate that the proposed V2X decision optimization method substantially outperforms conventional decision algorithms. Vehicle decision accuracy increased by 9.0%, rising from 89.2 to 98.2%. Additionally, the response time of the cloud control system decreased from 178 ms to 127 ms, marking a reduction of 28.7%, which significantly enhances decision efficiency and real-time performance. The introduction of the road segment hazard classification model also results in a hazard assessment accuracy of 99.5%, maintaining over 95% accuracy even in high-density traffic and complex road conditions, thus illustrating strong adaptability. The results highlight the effectiveness of the proposed V2X decision optimization framework and cloud control platform in enhancing the decision quality and safety of autonomous driving systems.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"29160"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-12772-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
To address the challenges of decision optimization and road segment hazard assessment within complex traffic environments, and to enhance the safety and responsiveness of autonomous driving, a Vehicle-to-Everything (V2X) decision framework is proposed. This framework is structured into three modules: vehicle perception, decision-making, and execution. The vehicle perception module integrates sensor fusion techniques to capture real-time environmental data, employing deep neural networks to extract essential information. In the decision-making module, deep reinforcement learning algorithms are applied to optimize decision processes by maximizing expected rewards. Meanwhile, the road segment hazard classification module, utilizing both historical traffic data and real-time perception information, adopts a hazard evaluation model to classify road conditions automatically, providing real-time feedback to guide vehicle decision-making. Furthermore, an autonomous driving cloud control platform is designed, augmenting decision-making capabilities through centralized computing resources, enabling large-scale data analysis, and facilitating collaborative optimization. Experimental evaluations conducted within simulation environments and utilizing the KITTI dataset demonstrate that the proposed V2X decision optimization method substantially outperforms conventional decision algorithms. Vehicle decision accuracy increased by 9.0%, rising from 89.2 to 98.2%. Additionally, the response time of the cloud control system decreased from 178 ms to 127 ms, marking a reduction of 28.7%, which significantly enhances decision efficiency and real-time performance. The introduction of the road segment hazard classification model also results in a hazard assessment accuracy of 99.5%, maintaining over 95% accuracy even in high-density traffic and complex road conditions, thus illustrating strong adaptability. The results highlight the effectiveness of the proposed V2X decision optimization framework and cloud control platform in enhancing the decision quality and safety of autonomous driving systems.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.