{"title":"Model-Dependent Attenuation of Seizures by Cinnabar.","authors":"Yuang Gu, Yu Yao, Qiuwen Lou, Xinyan Zhu, Ju Lan, Chenshu Gao, Shuangshuang Wu, Jingjia Liang, Cenglin Xu, Yi Wang, Heming Cheng, Zhong Chen","doi":"10.1007/s12264-025-01480-7","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy is one of the most prevalent and severe neurological disorders, and it is inadequately controlled with currently available medications. While cinnabar (mercury(II) sulfide)-a traditional Chinese medicine-has historical application in epilepsy treatment, its therapeutic efficacy and underlying mechanisms are unclear. In this study, we find that cinnabar exerts model-dependent antiseizure efficacy in mice. Specifically, it significantly attenuates acute seizures, enhances the termination of diazepam-resistant status epilepticus, and reduces spontaneous seizures in the kainic acid (KA)-induced seizure model. Conversely, no therapeutic effect was found in the maximal electroshock-, pentylenetetrazole-, or kindling-induced seizure model. Fiber photometry revealed that cinnabar normalizes KA-induced hippocampal neurotransmission imbalances by simultaneously decreasing glutamate hyperactivity and γ-aminobutyric acid hypoactivity. Furthermore, cinnabar has neuroprotective effects and alleviates comorbid anxiety-like behaviors, while showing no alterations in motor function. Our findings suggest cinnabar's potential as a therapeutic agent for seizure management, via a mechanism associated with the reversal of the hippocampal excitatory/inhibitory imbalance.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01480-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Epilepsy is one of the most prevalent and severe neurological disorders, and it is inadequately controlled with currently available medications. While cinnabar (mercury(II) sulfide)-a traditional Chinese medicine-has historical application in epilepsy treatment, its therapeutic efficacy and underlying mechanisms are unclear. In this study, we find that cinnabar exerts model-dependent antiseizure efficacy in mice. Specifically, it significantly attenuates acute seizures, enhances the termination of diazepam-resistant status epilepticus, and reduces spontaneous seizures in the kainic acid (KA)-induced seizure model. Conversely, no therapeutic effect was found in the maximal electroshock-, pentylenetetrazole-, or kindling-induced seizure model. Fiber photometry revealed that cinnabar normalizes KA-induced hippocampal neurotransmission imbalances by simultaneously decreasing glutamate hyperactivity and γ-aminobutyric acid hypoactivity. Furthermore, cinnabar has neuroprotective effects and alleviates comorbid anxiety-like behaviors, while showing no alterations in motor function. Our findings suggest cinnabar's potential as a therapeutic agent for seizure management, via a mechanism associated with the reversal of the hippocampal excitatory/inhibitory imbalance.
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.