The effect of elastic deformation and rigid displacement soft tissue artefact on glenohumeral axial rotation.

IF 2.4 3区 医学 Q3 BIOPHYSICS
Journal of biomechanics Pub Date : 2025-10-01 Epub Date: 2025-08-05 DOI:10.1016/j.jbiomech.2025.112893
Martin B Warner, Markus O Heller
{"title":"The effect of elastic deformation and rigid displacement soft tissue artefact on glenohumeral axial rotation.","authors":"Martin B Warner, Markus O Heller","doi":"10.1016/j.jbiomech.2025.112893","DOIUrl":null,"url":null,"abstract":"<p><p>Measurement of axial rotation of the humerus using marker-based motion capture is compromised due to soft tissue artefact. The aim of this study was to quantify the elastic deformation of markers on the humerus and evaluate the combined effects of elastic deformation and rigid displacement of the markers on humeral kinematics during axial rotation. Thirteen wheelchair users performed active humeral internal rotation whilst a Vicon motion capture system tracked 12 retro-reflective markers placed on the arm. Elastic deformation was quantified using the Optimal Common Shape Technique (OCST) and Ordinary Procrustes Analysis (OPA). The combined effects of elastic deformation and rigid marker displacement were quantified by comparing kinematics derived from only the humeral markers to the kinematics derived using the forearm segment (benchmark measurement). Elastic deformation of the markers demonstrated a systematic variation in the deformation pattern across the arm where the proximal markers lagged and the distal markers proceeded the OPA fitted reference shape of the marker cluster. There was a significant 48.7° underestimation in the range of axial rotation (P < 0.001). A secondary analysis was performed utilising only the distal arm markers on the humerus. The underestimation in axial rotation range of motion reduced to 25.9° and was not significantly different to the benchmark measurement from neutral through to internal rotation. Systematic elastic deformation of markers was present across the upper limb segment that adversely affected the estimation of humeral axial rotation. Careful selection of marker position for the arm cluster is needed minimise the effect of soft tissue artefact.</p>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"191 ","pages":"112893"},"PeriodicalIF":2.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiomech.2025.112893","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Measurement of axial rotation of the humerus using marker-based motion capture is compromised due to soft tissue artefact. The aim of this study was to quantify the elastic deformation of markers on the humerus and evaluate the combined effects of elastic deformation and rigid displacement of the markers on humeral kinematics during axial rotation. Thirteen wheelchair users performed active humeral internal rotation whilst a Vicon motion capture system tracked 12 retro-reflective markers placed on the arm. Elastic deformation was quantified using the Optimal Common Shape Technique (OCST) and Ordinary Procrustes Analysis (OPA). The combined effects of elastic deformation and rigid marker displacement were quantified by comparing kinematics derived from only the humeral markers to the kinematics derived using the forearm segment (benchmark measurement). Elastic deformation of the markers demonstrated a systematic variation in the deformation pattern across the arm where the proximal markers lagged and the distal markers proceeded the OPA fitted reference shape of the marker cluster. There was a significant 48.7° underestimation in the range of axial rotation (P < 0.001). A secondary analysis was performed utilising only the distal arm markers on the humerus. The underestimation in axial rotation range of motion reduced to 25.9° and was not significantly different to the benchmark measurement from neutral through to internal rotation. Systematic elastic deformation of markers was present across the upper limb segment that adversely affected the estimation of humeral axial rotation. Careful selection of marker position for the arm cluster is needed minimise the effect of soft tissue artefact.

弹性变形和刚性位移软组织假体对盂肱关节轴向旋转的影响。
使用基于标记的运动捕捉测量肱骨轴向旋转由于软组织伪影而受到损害。本研究的目的是量化肱骨上标记物的弹性变形,并评估在轴向旋转过程中标记物的弹性变形和刚性位移对肱骨运动学的综合影响。13名轮椅使用者进行积极的肱骨内旋,同时Vicon运动捕捉系统跟踪放置在手臂上的12个反射标记。采用最优共形法(OCST)和普通普洛克斯特分析法(OPA)对弹性变形进行量化。通过比较仅由肱骨标记导出的运动学与使用前臂节段导出的运动学(基准测量),量化弹性变形和刚性标记位移的综合影响。标记的弹性变形显示了整个手臂的变形模式的系统变化,其中近端标记滞后,远端标记继续OPA拟合标记簇的参考形状。在轴向旋转范围内,有48.7°的显著低估(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信