Dopaminergic projections to the prefrontal cortex are critical for rapid threat avoidance learning.

IF 7.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Current Biology Pub Date : 2025-09-08 Epub Date: 2025-08-08 DOI:10.1016/j.cub.2025.07.035
Zachary Zeidler, Marta Fernandez Gomez, Tanya A Gupta, Meelan Shari, Scott A Wilke, Laura A DeNardo
{"title":"Dopaminergic projections to the prefrontal cortex are critical for rapid threat avoidance learning.","authors":"Zachary Zeidler, Marta Fernandez Gomez, Tanya A Gupta, Meelan Shari, Scott A Wilke, Laura A DeNardo","doi":"10.1016/j.cub.2025.07.035","DOIUrl":null,"url":null,"abstract":"<p><p>To survive, animals must rapidly learn to avoid predictable threats. Such learning depends on detecting reliable cue-outcome relationships that efficiently drive behavioral adaptations. The medial prefrontal cortex (mPFC) integrates learned information about the environment to guide adaptive behaviors<sup>1</sup><sup>,</sup><sup>2</sup><sup>,</sup><sup>3</sup><sup>,</sup><sup>4</sup><sup>,</sup><sup>5</sup><sup>,</sup><sup>6</sup><sup>,</sup><sup>7</sup> and is critical for threat avoidance.<sup>8</sup><sup>,</sup><sup>9</sup><sup>,</sup><sup>10</sup><sup>,</sup><sup>11</sup><sup>,</sup><sup>12</sup><sup>,</sup><sup>13</sup><sup>,</sup><sup>14</sup> However, most studies focused on well-learned threat avoidance strategies, and the specific inputs that signal avoidability and drive rapid avoidance learning remain poorly understood. Dopamine (DA) inputs from the ventral tegmental area (VTA) potently modulate prefrontal function and are preferentially engaged by aversive stimuli.<sup>15</sup><sup>,</sup><sup>16</sup><sup>,</sup><sup>17</sup><sup>,</sup><sup>18</sup><sup>,</sup><sup>19</sup><sup>,</sup><sup>20</sup><sup>,</sup><sup>21</sup> Pharmacological blockade, DA depletion, and microdialysis experiments implicated DA in threat avoidance<sup>22</sup><sup>,</sup><sup>23</sup><sup>,</sup><sup>24</sup><sup>,</sup><sup>25</sup> but lacked the spatiotemporal resolution required to define the timing of mPFC DA signals during avoidance learning. We used high-resolution tools to dissect the role of the VTA-mPFC DA circuit in rapid avoidance learning. Optogenetic suppression of VTA DA terminals in mPFC selectively slowed learning of a cued avoidance response without affecting cue-shock association learning, reactive escape behaviors, or expression of previously learned avoidance. Using a fluorescent DA sensor, we observed rapid, event-locked DA activity that emerged transiently during learning initiation. Increased DA encoded aversive outcomes and their predictive cues, while decreased DA encoded their omission and predicted how quickly mice learned to avoid. In yoked mice lacking control over shock omission, these dynamics were largely absent. Together, these findings demonstrate that the VTA-mPFC DA circuit is necessary for rapid acquisition of proactive avoidance behaviors and reveal transient event-related DA signals underlying this form of learning.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"4259-4269.e3"},"PeriodicalIF":7.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12338064/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.07.035","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To survive, animals must rapidly learn to avoid predictable threats. Such learning depends on detecting reliable cue-outcome relationships that efficiently drive behavioral adaptations. The medial prefrontal cortex (mPFC) integrates learned information about the environment to guide adaptive behaviors1,2,3,4,5,6,7 and is critical for threat avoidance.8,9,10,11,12,13,14 However, most studies focused on well-learned threat avoidance strategies, and the specific inputs that signal avoidability and drive rapid avoidance learning remain poorly understood. Dopamine (DA) inputs from the ventral tegmental area (VTA) potently modulate prefrontal function and are preferentially engaged by aversive stimuli.15,16,17,18,19,20,21 Pharmacological blockade, DA depletion, and microdialysis experiments implicated DA in threat avoidance22,23,24,25 but lacked the spatiotemporal resolution required to define the timing of mPFC DA signals during avoidance learning. We used high-resolution tools to dissect the role of the VTA-mPFC DA circuit in rapid avoidance learning. Optogenetic suppression of VTA DA terminals in mPFC selectively slowed learning of a cued avoidance response without affecting cue-shock association learning, reactive escape behaviors, or expression of previously learned avoidance. Using a fluorescent DA sensor, we observed rapid, event-locked DA activity that emerged transiently during learning initiation. Increased DA encoded aversive outcomes and their predictive cues, while decreased DA encoded their omission and predicted how quickly mice learned to avoid. In yoked mice lacking control over shock omission, these dynamics were largely absent. Together, these findings demonstrate that the VTA-mPFC DA circuit is necessary for rapid acquisition of proactive avoidance behaviors and reveal transient event-related DA signals underlying this form of learning.

多巴胺能投射到前额叶皮层对快速的威胁避免学习至关重要。
为了生存,动物必须迅速学会避开可预见的威胁。这种学习依赖于发现可靠的线索-结果关系,从而有效地推动行为适应。内侧前额叶皮层(mPFC)整合学习到的环境信息来指导适应性行为1,2,3,4,5,6,7,对威胁规避至关重要。8、9、10、11、12、13、14然而,大多数研究集中在良好学习的威胁回避策略上,而对信号回避和驱动快速回避学习的具体输入仍知之甚少。来自腹侧被盖区(VTA)的多巴胺(DA)输入可有效调节前额叶功能,并优先参与厌恶刺激。15,16,17,18,19,20,21药物阻断、DA耗竭和微透析实验表明DA与威胁回避有关2,23,24,25,但缺乏确定回避学习过程中mPFC DA信号时间所需的时空分辨率。我们使用高分辨率的工具来剖析VTA-mPFC DA电路在快速回避学习中的作用。光遗传学抑制mPFC中VTA - DA终端选择性地减缓了线索回避反应的学习,而不影响线索-休克关联学习、反应性逃避行为或先前习得的回避表达。使用荧光DA传感器,我们观察到快速的、事件锁定的DA活动在学习开始期间短暂出现。增加的DA编码厌恶结果及其预测线索,而减少的DA编码其遗漏并预测小鼠学习避免的速度。在缺乏对电击遗漏控制的小鼠中,这些动力学基本上不存在。总之,这些发现表明,VTA-mPFC DA回路对于主动回避行为的快速获取是必要的,并揭示了这种学习形式背后的瞬态事件相关DA信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信