Japanese medicinal drug labeling for use in the clinical setting as informed by pharmacogenomic data on cytochrome P450 enzymes obtained from in silico studies.

IF 2.2 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Drug Metabolism and Pharmacokinetics Pub Date : 2025-10-01 Epub Date: 2025-05-29 DOI:10.1016/j.dmpk.2025.101496
Yoichi Tanaka, Makiko Shimizu, Yoshiro Saito, Hiroshi Yamazaki
{"title":"Japanese medicinal drug labeling for use in the clinical setting as informed by pharmacogenomic data on cytochrome P450 enzymes obtained from in silico studies.","authors":"Yoichi Tanaka, Makiko Shimizu, Yoshiro Saito, Hiroshi Yamazaki","doi":"10.1016/j.dmpk.2025.101496","DOIUrl":null,"url":null,"abstract":"<p><p>Although the United States Food and Drug Administration has disclosed a list of drugs with pharmacogenomic biomarkers for drug labeling, there is limited information regarding pharmacogenomic-associated drugs in Japan. Such associations include genetic variants of uridine diphosphate glucuronosyltransferase 1A1 for irinotecan, nudix hydrolase 15 for thiopurine drugs, and cytochrome P450 (P450) 2C9 for siponimod. The effects of such genetic variants on drug concentrations are similar to those from drug interactions. Because of race and dosage differences, the relevance of pharmacogenomic associations in Asian populations requires confirmation. This white paper proposes that in vitro pharmacogenomic information can be used to predict human pharmacokinetics and to describe in drug labels the changes in blood concentrations by genetic variants. For P450 variants CYP2C9∗3, CYP2C19∗2, CYP2C19∗3, CYP2D6∗10, and CYP3A4∗16, we propose using the enzymatic activity parameters obtained from in vitro functional analysis of the drug-metabolizing enzymes for multiple substrate drugs to predict the effects of these variants on human pharmacokinetics. Consequently, in patients prescribed only a single drug, anything more than a \"moderate effect\" on plasma exposure should be mentioned as a caution in the drug labels; such effects are likely caused by enzyme polymorphisms resulting in similar effects to drug-drug interactions.</p>","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":"64 ","pages":"101496"},"PeriodicalIF":2.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.dmpk.2025.101496","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Although the United States Food and Drug Administration has disclosed a list of drugs with pharmacogenomic biomarkers for drug labeling, there is limited information regarding pharmacogenomic-associated drugs in Japan. Such associations include genetic variants of uridine diphosphate glucuronosyltransferase 1A1 for irinotecan, nudix hydrolase 15 for thiopurine drugs, and cytochrome P450 (P450) 2C9 for siponimod. The effects of such genetic variants on drug concentrations are similar to those from drug interactions. Because of race and dosage differences, the relevance of pharmacogenomic associations in Asian populations requires confirmation. This white paper proposes that in vitro pharmacogenomic information can be used to predict human pharmacokinetics and to describe in drug labels the changes in blood concentrations by genetic variants. For P450 variants CYP2C9∗3, CYP2C19∗2, CYP2C19∗3, CYP2D6∗10, and CYP3A4∗16, we propose using the enzymatic activity parameters obtained from in vitro functional analysis of the drug-metabolizing enzymes for multiple substrate drugs to predict the effects of these variants on human pharmacokinetics. Consequently, in patients prescribed only a single drug, anything more than a "moderate effect" on plasma exposure should be mentioned as a caution in the drug labels; such effects are likely caused by enzyme polymorphisms resulting in similar effects to drug-drug interactions.

根据从计算机研究中获得的细胞色素P450酶的药物基因组学数据,用于临床环境的日本药品标签。
尽管美国食品和药物管理局已经公布了一份药物标签上带有药物基因组生物标记物的药物清单,但在日本,关于药物基因组相关药物的信息有限。这些关联包括伊立替康的尿苷二磷酸葡萄糖醛基转移酶1A1、硫嘌呤类药物的嘌呤水解酶15和西泊尼莫德的细胞色素P450 (P450) 2C9的遗传变异。这些基因变异对药物浓度的影响与药物相互作用的影响相似。由于种族和剂量的差异,亚洲人群中药物基因组关联的相关性需要证实。本白皮书提出体外药物基因组学信息可用于预测人体药代动力学,并在药物标签上描述遗传变异引起的血药浓度变化。对于P450变体CYP2C9∗3,CYP2C19∗2,CYP2C19∗3,CYP2D6∗10和CYP3A4∗16,我们建议使用从多种底物药物代谢酶的体外功能分析中获得的酶活性参数来预测这些变体对人体药代动力学的影响。因此,对于只服用一种药物的患者,任何对血浆暴露超过“中等影响”的情况都应在药物标签上注明注意事项;这种影响可能是由酶多态性引起的,导致类似于药物-药物相互作用的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
9.50%
发文量
50
审稿时长
69 days
期刊介绍: DMPK publishes original and innovative scientific papers that address topics broadly related to xenobiotics. The term xenobiotic includes medicinal as well as environmental and agricultural chemicals and macromolecules. The journal is organized into sections as follows: - Drug metabolism / Biotransformation - Pharmacokinetics and pharmacodynamics - Toxicokinetics and toxicodynamics - Drug-drug interaction / Drug-food interaction - Mechanism of drug absorption and disposition (including transporter) - Drug delivery system - Clinical pharmacy and pharmacology - Analytical method - Factors affecting drug metabolism and transport - Expression of genes for drug-metabolizing enzymes and transporters - Pharmacogenetics and pharmacogenomics - Pharmacoepidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信