Amanda E Sandelin, Ricky Nencini, Ekrem Yasar, Satoshi Fudo, Vassilis Stratoulias, Tommi Kajander, O H Samuli Ollila
{"title":"Quality Evaluation Based Simulation Selection (QEBSS) for analysis of conformational ensembles and dynamics of multidomain proteins.","authors":"Amanda E Sandelin, Ricky Nencini, Ekrem Yasar, Satoshi Fudo, Vassilis Stratoulias, Tommi Kajander, O H Samuli Ollila","doi":"10.1038/s42004-025-01623-x","DOIUrl":null,"url":null,"abstract":"<p><p>Multidomain proteins containing both folded and intrinsically disordered regions are crucial for biological processes, but characterizing their conformational ensembles and dynamics remains challenging. We introduce the Quality Evaluation Based Simulation Selection (QEBSS) protocol, which combines MD simulations with NMR-derived protein backbone <sup>15</sup>N T<sub>1</sub> and T<sub>2</sub> spin relaxation times and hetNOE values to interpret conformational ensembles and dynamics of multidomain proteins. We demonstrate the practical advantage of QEBSS by characterizing four flexible multidomain proteins: calmodulin, EN2, MANF, and CDNF. These biologically important proteins have been difficult to study due to their flexible nature. Our findings reveal new insights into their conformational landscapes and dynamics, providing mechanistic understanding of their biological functions. QEBSS offers quantitative quality evaluation of simulations and a systematic approach for resolving conformational ensembles of multidomain proteins with heterogeneous dynamics. Given the importance of such proteins in biology, biotechnology, and materials science, QEBSS should benefit fields from drug design to novel materials development.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"241"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335556/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01623-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Multidomain proteins containing both folded and intrinsically disordered regions are crucial for biological processes, but characterizing their conformational ensembles and dynamics remains challenging. We introduce the Quality Evaluation Based Simulation Selection (QEBSS) protocol, which combines MD simulations with NMR-derived protein backbone 15N T1 and T2 spin relaxation times and hetNOE values to interpret conformational ensembles and dynamics of multidomain proteins. We demonstrate the practical advantage of QEBSS by characterizing four flexible multidomain proteins: calmodulin, EN2, MANF, and CDNF. These biologically important proteins have been difficult to study due to their flexible nature. Our findings reveal new insights into their conformational landscapes and dynamics, providing mechanistic understanding of their biological functions. QEBSS offers quantitative quality evaluation of simulations and a systematic approach for resolving conformational ensembles of multidomain proteins with heterogeneous dynamics. Given the importance of such proteins in biology, biotechnology, and materials science, QEBSS should benefit fields from drug design to novel materials development.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.