Sustainable in-situ arsenic immobilization in paddy soils using magnetic biochar and the role of microbial functional genes.

IF 8.4 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Journal of Environmental Management Pub Date : 2025-09-01 Epub Date: 2025-08-08 DOI:10.1016/j.jenvman.2025.126916
Meina Liang, Jiawei Li, Jingnan Zhang, Qing Zhang, Xuehong Zhang, Dunqiu Wang
{"title":"Sustainable in-situ arsenic immobilization in paddy soils using magnetic biochar and the role of microbial functional genes.","authors":"Meina Liang, Jiawei Li, Jingnan Zhang, Qing Zhang, Xuehong Zhang, Dunqiu Wang","doi":"10.1016/j.jenvman.2025.126916","DOIUrl":null,"url":null,"abstract":"<p><p>Arsenic (As) contamination in paddy soils poses a threat to both rice safety and human health. To address this challenge, we developed and evaluated an in-situ remediation approach using magnetic iron oxide biochar (MBC) for paddy soils with varying As contamination levels, aiming to reduce As accumulation in rice grains. MBC significantly altered soil physicochemical properties [pH, dissolved organic carbon (DOC), soil organic matter (SOM), and Free iron oxides (Fe-ox)] at both tillering and maturity stages. Reduced available As by 31-65 % across low (136.68 mg kg<sup>-1</sup>), moderate (214.22 mg kg<sup>-1</sup>), and high (254.21 mg kg<sup>-1</sup>) contamination levels, and suppressed As translocation to rice grains by 62 %, ensuring brown rice As levels below the Chinese national safety threshold (GB 2762-2022, ≤0.35 mg kg<sup>-1</sup>). The paddy soils' metagenomic analysis revealed MBC-enriched Pseudomonadota and Actinomycetota with arsM and arsC genes, transitioning microbial networks from modular (tillering stage) to interconnected (maturity stage), enhancing arsenic detoxification and organic matter degradation. MBC enables efficient As immobilization and redox transformation, offering a scalable, eco-friendly solution for reconciling soil remediation with safe rice production in various As-contaminated regions.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"392 ","pages":"126916"},"PeriodicalIF":8.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2025.126916","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Arsenic (As) contamination in paddy soils poses a threat to both rice safety and human health. To address this challenge, we developed and evaluated an in-situ remediation approach using magnetic iron oxide biochar (MBC) for paddy soils with varying As contamination levels, aiming to reduce As accumulation in rice grains. MBC significantly altered soil physicochemical properties [pH, dissolved organic carbon (DOC), soil organic matter (SOM), and Free iron oxides (Fe-ox)] at both tillering and maturity stages. Reduced available As by 31-65 % across low (136.68 mg kg-1), moderate (214.22 mg kg-1), and high (254.21 mg kg-1) contamination levels, and suppressed As translocation to rice grains by 62 %, ensuring brown rice As levels below the Chinese national safety threshold (GB 2762-2022, ≤0.35 mg kg-1). The paddy soils' metagenomic analysis revealed MBC-enriched Pseudomonadota and Actinomycetota with arsM and arsC genes, transitioning microbial networks from modular (tillering stage) to interconnected (maturity stage), enhancing arsenic detoxification and organic matter degradation. MBC enables efficient As immobilization and redox transformation, offering a scalable, eco-friendly solution for reconciling soil remediation with safe rice production in various As-contaminated regions.

磁性生物炭在水稻土中持续原位固定砷及微生物功能基因的作用。
水稻土砷污染对水稻安全和人类健康都构成威胁。为了解决这一挑战,我们开发并评估了磁性氧化铁生物炭(MBC)对不同砷污染水平水稻土的原位修复方法,旨在减少水稻籽粒中的砷积累。MBC显著改变了分蘖期和成熟期土壤理化性质[pH、溶解有机碳(DOC)、土壤有机质(SOM)和游离氧化铁(Fe-ox)]。在低(136.68 mg kg-1)、中(214.22 mg kg-1)和高(254.21 mg kg-1)污染水平下,有效砷含量降低了31- 65%,抑制了砷向稻米的转运62%,确保糙米砷含量低于中国国家安全阈值(GB 2762-2022,≤0.35 mg kg-1)。水稻土宏基因组分析显示,富含mbc的假单胞菌和放线菌具有arsM和arsC基因,使微生物网络从模块化(分蘖期)向互联化(成熟期)过渡,增强了砷解毒和有机物降解能力。MBC实现了高效的砷固定和氧化还原转化,为各种砷污染地区的土壤修复和安全水稻生产提供了可扩展的、环保的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信